Автор: Пользователь скрыл имя, 25 Апреля 2014 в 11:31, контрольная работа
Из всех творений человеческого разума: от мифологических единорогов и драконов до водородной бомбы, пожалуй, наиболее фантастическое - это черная дыра; дыра в пространстве с вполне конкретными краями, в которую может провалиться все что угодно и из которой ничто не в силах выбраться. Дыра, в которой гравитационная сила столь велика, что даже свет захватывается и удерживается в этой ловушке. Дыра, которая искривляет пространство и искажает течение времени. Черные дыры кажутся, скорее, атрибутами научной фантастики или древних мифов, чем реальными объектами. Однако из физических законов с неизбежностью следует существование черных дыр. В одной нашей Галактике их, возможно, миллионы.
Введение
Из всех творений человеческого разума: от мифологических единорогов и драконов до водородной бомбы, пожалуй, наиболее фантастическое - это черная дыра; дыра в пространстве с вполне конкретными краями, в которую может провалиться все что угодно и из которой ничто не в силах выбраться. Дыра, в которой гравитационная сила столь велика, что даже свет захватывается и удерживается в этой ловушке. Дыра, которая искривляет пространство и искажает течение времени. Черные дыры кажутся, скорее, атрибутами научной фантастики или древних мифов, чем реальными объектами. Однако из физических законов с неизбежностью следует существование черных дыр. В одной нашей Галактике их, возможно, миллионы.
Чёрные дыры - это и не тела, и не излучение. Они представляют собой сгустки гравитации. Изучение природы чёрных дыр позволяет существенно расширить наше знание о фундаментальных свойствах пространства и времени.
Черные дыры являются самыми грандиозными источниками энергии во Вселенной. Мы, вероятно, наблюдаем их в далеких квазарах, во взрывающихся ядрах галактик.
Они возникают также после смерти больших звезд. Возможно, черные дыры в будущем станут источниками энергии для человечества.
В этом явлении, казалось, содержится столько необъяснимого, почти мистического, что даже Альберт Эйнштейн, чьи теории, по сути дела, породили представление о черных дырах, сам просто не верил в их существование. Сегодня астрофизики все больше убеждаются, что черные дыры - это реальность. Поэтому на данный момент эта тема очень актуальна для ее изучения.
1. Образование черных дыр во вселенной.
Если масса звезды
в два раза превышает солнечную, то к концу
своей жизни звезда может взорваться как
сверхновая, но если масса вещества оставшегося
после взрыва, всё ещё превосходит две
солнечные, то звезда должна сжаться в
крошечное плотное тело, так как гравитационные
силы всецело подавляют всякое внутреннее
сопротивление сжатию. Учёные полагают,
что именно в этот момент катастрофический
гравитационный коллапс приводит к возникновению
чёрной дыры. Они считают, что с окончанием
термоядерных реакций звезда уже не может
находиться в устойчивом состоянии. Тогда
для массивной звезды остаётся один неизбежный
путь - путь всеобщего и полного сжатия
(коллапса), превращающего её в невидимую
Одним из наиболее впечатляющих следствий
общей теории относительности Эйнштейна
оказалось следующее: когда большая масса
начинает коллапсировать, этот процесс
не может быть остановлен и масса сжимается
в чёрную дыру. Если, например, невращающаяся
симметричная звезда начинает сжиматься
до критического размера, известного как
гравитационный радиус, или радиус Шварцшильда
(назван так в честь Карла Шварцшильда,
которой первым указал на его существование).
Если звезда достигает этого радиуса,
то уже не что не может воспрепятствовать
ей завершить коллапс, то есть буквально
замкнуться в себе [2].
Каковы же физические
свойства "чёрных дыр" и как учёные
предполагают обнаружить эти объекты?
Многие учёные раздумывали над этими вопросами;
получены кое-какие ответы, которые способны
помочь в поисках таких объектов.
Само название - чёрные
дыры - говорит о том, что это класс объектов,
которые нельзя увидеть. Их гравитационное
поле настолько сильно, что если бы мы
смогли сконцентрировать весь свет Солнца
в этом мощном прожекторе, мы не увидели
бы его, так как свет не смог бы преодолеть
воздействие на него гравитационного
поля чёрной дыры и покинуть её поверхность.
Именно поэтому такая поверхность называется
абсолютным горизонтом событий. Она представляет
собой границу чёрной дыры [4].
Учёные отмечают, что эти необычные объекты нелегко понять, оставаясь в рамках законов тяготения Ньютона. Вблизи поверхности чёрной дыры гравитация столь сильна, что привычные ньютоновские законы перестают здесь действовать.
Таким образом, для любого наблюдателя возможность увидеть чёрную дыру полностью исключена! Чтобы увидеть чёрные дыры, учёные прибегают к искусным уловкам. Руффини и Уиллер досконально изучили эту проблему и предложили несколько способов пусть не увидеть, но хотя бы обнаружить чёрную дыру. Рассмотрим один из этих способов, когда чёрная дыра рождается в процессе гравитационного коллапса, она должна излучать гравитационные волны, которые могли бы пересекать пространство со скоростью света и на короткое время искажать геометрию пространства вблизи Земли. Это искажение проявилось бы в виде гравитационных волн, действующих одновременно на одинаковые инструменты, установленные на земной поверхности на значительных расстояниях друг от друга [1]. Гравитационное излучение могло бы приходить от звёзд, испытывающих гравитационный коллапс. Если в течение обычной жизни звезда вращалась, то, сжимаясь и становясь всё меньше и меньше, она будет вращаться всё быстрее сохраняя свой момент количества движения. Наконец она может достигнуть такой стадии, когда скорость движения на её экваторе приблизится к скорости света, то есть к предельно возможной скорости. В этом случае звезда оказалась бы сильно деформированной и могла бы выбросить часть вещества. При такой деформации энергия могла бы уходить от звезды в виде гравитационных волн с частотой порядка тысячи колебаний в секунду (1000 Гц).
Некоторые учёные рассматривают образование чёрной дыры как маленькую модель того, что, согласно предсказаниям общей теории относительности, в конечном счёте может случиться со Вселенной. Общепризнано, что мы живём в неизменно расширяющейся Вселенной, и один из наиболее важных и насущных вопросов науки касается природы Вселенной, её прошлого и будущего. По-видимому, когда-нибудь мы сможем выяснить, по какому пути следует Вселенная, но, быть может, много раньше, изучая информацию, которая просачивается при рождении чёрных дыр, и те физические законы, которые управляют их судьбой, мы сможем предсказать окончательную судьбу Вселенной.
В настоящее время
астрономам известны 38 черных дыр. Масса
сверхмассивной черной дыры превышает
массу Солнца от одного миллиона до одного
миллиарда раз. Такие черные дыры располагаются
в центрах галактик. Поскольку они невидимы,
их поиск и изучение основаны на наблюдениях
перемещений звезд, вращающихся вокруг
них. Считается, что квазары, чрезвычайно
удаленные астрономические объекты, содержат
в центре сверхмассивные черные дыры,
которые активно поглощают окружающие их звезды и газ [3]
Проведенные до сих
пор прямые измерения сверхмассивных
черных дыр в 38 галактиках были основаны
на наблюдениях за вращением и скоростями
звезд и газа около центров этих галактик.
Такие измерения требуют высокого пространственного
разрешения, такого, какое способен обеспечить
пока только космический телескоп Hubble.
Но этот тип измерений
дает хорошие результаты только для близлежащих
галактик. Квазары слишком далеки, чтобы
применять к ним эти прямые методы. Поэтому
астрономы вынуждены полагаться на физические
модели областей, лежащих вблизи черных
дыр, чтобы измерить их массы.
2. Поиски черных дыр и их наблюдения.
То, что знают астрономы об эволюции звезд, приводит к неизбежному выводу: черные дыры должны возникать в конце жизни массивных небесных тел.
Наверное, прав советский астрофизик И. Шкловский, сказавший, что А. Эддингтон слишком любил звезды, которым он отдал всю свою жизнь. Он построил теорию равновесия и устойчивости звезд, а тут такая катастрофа - коллапс... Этого не может быть, утверждал А. Эддингтон. Природа должна была «изобрести» какое-нибудь средство, предохраняющее космическую материю от такого жалкого конца. И. Шкловский справедливо заключает: «Не зря говорится, что наши недостатки есть продолжение наших достоинств».
У астрономов, уже давно был накоплен опыт изучения неизлучающих объектов. Таковы, например, темные пылевые туманности. Они видны как черные пятна на фоне звезд или светящихся газовых туманностей. Но пылевые туманности являются гигантскими по своим размерам объектами, а черные дыры звездного происхождения имеют в поперечнике всего-навсего десяток километров. И так как они возникают из массивных звезд, то ближайшая черная дыра должна быть расположена от нас на расстоянии порядка нескольких десятков лет. Следовательно, видимые угловые размеры такой черной дыры должны составлять 0,00000001 угловой секунды, и увидеть ее как темное пятнышко абсолютно невозможно[4].
Как упоминалось ранее, черная дыра должна отклонять проходящие мимо нее лучи света. Но чтобы этот эффект был достаточно заметен, взаимное расположение источника света (какой-либо еще более далекой звезды), черной дыры и наблюдателя должно быть подобрано столь специальным образом, что о случайной реализации этого события нечего и думать.
Необходимо было найти такие физические явления, в которых черная дыра проявляла бы себя активно и однозначно. И такое явление было найдено - это падение газа в поле тяготения черной дыры.
В межзвездном пространстве имеются обширные газовые туманности. Если черная дыра находится в такой туманности, газ будет падать в ее поле тяготения. В падающем газе, кроме того, имеется магнитное поле, а в ходе падения развиваются турбулентные движения. Энергия магнитного поля газа в ходе падения должна переходить в тепло. «Нагретые» электроны, двигаясь в магнитных полях, излучают электромагнитные волны. Вблизи горизонта черной дыры вступают в игру эффекты общей теории относительности. Часть излучения захватывается черной дырой. Основная доля излучения, видимая далеким наблюдателем, уходит с расстояния в несколько гравитационных градусов. Так, еще на подлете к черной дыре, до того как провалиться в нее, нагретый газ излучает энергию в окружающее пространство.
В межзвездном пространстве мала плотность газа, и, следовательно, его мало падает на черную дыру. В Галактике осуществляться условия, когда газа падает гораздо больше. Такие условия могут осуществляться, если, например, черная дыра входит в состав очень тесной двойной системы, где вторая компонента является нормальной звездой-гигантом. В этом случае газ из оболочки нормальной звезды под действием тяготения компаньона будет к нему перетекать мощным потоком.
Черные дыры следует искать как рентгеновские источники в составе тесных двойных звездных систем, где они могут быть наряду с нейтронными звездами. Такое предсказание было сделано академиком Я. Зельдовичем и мной в 1966 году, вскоре после открытия первых рентгеновских источников И. Шкловский, сделавший такое же предсказание в 1967 году, построил подробную астрофизическую картину процессов, которые должны происходить в источниках рентгеновских лучей в двойных звездных системах [1].
Для поиска рентгеновских источников на небе необходим вынос рентгеновских телескопов за пределы атмосферы, а для длительных наблюдений они должны быть установлены на искусственных спутниках (полет ракеты ведь очень непродолжителен).
Газ падает на магнитные полюса вдоль магнитных силовых линий, и в результате возникает направленное рентгеновское излучение. Вращение же делает эти объекты как бы вращающимися рентгеновскими прожекторами. Но у черной дыры, как мы видели, нет каких-либо активных пятен на поверхности, и она не может приводить к явлению прожектора. Сгустки горячего газа в газовом диске вблизи черной дыры, вращаясь во внутренних областях, могли бы дать периодические вспышки. Однако довольно быстро этот период должен сильно измениться - ведь сгусток не жестко прикреплен к этому чему-то вращающемуся, - а из-за трения постепенно приблизиться к звезде (в результате период обращения уменьшается).
Таким образом, черные дыры должны находиться среди рентгеновских источников в двойных системах, не являющихся пульсарами. Эти источники не могут быть обычными звездами. Ведь для того чтобы газ нагрелся до температуры, достаточной для испускания рентгеновских лучей, гравитационное поле, в котором он движется, должно быть очень велико. Такими полями обладают только компактные (сжавшиеся) «умершие» звезды: белые карлики, нейтронные звезды или черные дыры.
Нормальная видимая звезда в этой двойной системе является массивной звездой с массой около 20 солнечных масс. «Умершая» звезда, из окрестностей которой идет рентгеновское излучение, имеет массу около 10 солнечных масс. Это намного больше критического значения.
Рассмотрим несколько подробнее процессы, происходящие в этой системе. Компоненты двойной звезды обращаются вокруг центра масс с периодом 5,6 суток. Черная дыра массой около 10 солнечных масс притягивает к себе газ из атмосферы «нормальной» звезды-гиганта массой около 20 масс Солнца. Этот газ закручивается орбитальным движением, а центробежные и гравитационные силы сплющивают его в диск.
Струи газа из-за трения соседних слоев движутся вокруг черной дыры по сходящейся к центру спирали. Однако скорость движения к центру намного меньше, чем скорость движения по орбите. Только через месяц газ достигает внутреннего, ближайшего к черной дыре края диска. Здесь, как мы знаем, орбитальное движение становится неустойчивым, и газ сваливается в черную дыру.
За все время путешествия в диске газ нагревается трением: в наружных слоях диска его температура всего несколько десятков тысяч градусов, а во внутренних частях - больше 10 миллионов градусов. Общая рентгеновская светимость этого газа в тысячи раз превосходит полную (во всех областях спектра) светимость Солнца. Основная часть рентгеновского излучения, которая наблюдается на Земле, приходит из самых внутренних частей диска радиусом, не превышающим 200 километров. Размер самой черной дыры около 30 километров [5].
Часть массивных звезд в конце жизни полностью разрушается в термоядерном взрыве в ходе коллапса, а в какой части их все же остается достаточно массивное ядро, сжимающееся в черную дыру. Большинство астрономов считают, что черных дыр в Галактике должно быть многие миллионы, если не миллиарды. Опасности случайного столкновения с умершей массивной звездой нет никакой. Ведь звезды столь далеко находятся друг от друга в пространстве, что вероятность их столкновения совершенно пренебрежимо. Тем более ничтожна вероятность столкновения с черной дырой, которая гораздо меньше по размеру звезды. К тому же в черные дыры превратилась только очень малая часть всех звезд в Галактике.
Заключение
Чёрные дыры являются совершенно необычными по своим свойствам объектами. Несмотря на весь прогресс, достигнутый в их изучении, природа пространства и времени чёрных дыр в большой мере остаётся загадочной. Некоторые аспекты этой проблемы всё ещё выглядят как научные забавы, интересные только для специалистов.
Астрофизик из Кембриджского университета Альберт Шервинский уверяет, что еще в 2010 году обсерватория НАСА «Чандра» зафиксировала огромное облако пыли и «кислотного тумана» («acid nebula») размером в 16 миллионов километров. Якобы оно движется в нашу сторону почти со скоpостью света, разрушая все на своем пути: кометы, астероиды и даже звезды. И должно достигнуть Земли 1 июня 2014 года. Ученый полагает, что это облако в свое время было порождено деятельностью той самой прожорливой черной дыры в Млечном пути.
— Эффект воздействия облака на планету будет сродни тому, как если пролить на рукописный чернильный текст воду, которая разъедает слова и превращает в месиво, — пугает Шервинский. — Полное разрушение Солнечной системы неминуемо.