Автор: Пользователь скрыл имя, 11 Апреля 2012 в 10:13, доклад
Название нового направления в науке возникло просто в результате добавления к общему понятию «технология» приставки «нано». «Нано», так же как и «милли», и «микро», – приставки к выражениям единиц линейных размеров для создания производных этих единиц в системе СИ, причем в сторону уменьшения линейных размеров: например, 1 миллиметр (мм) означает одну тысячную долю метра (1 мм = 10-3 м), 1 микрометр (другое название – микрон) составляет одну миллионную долю метра (1 мкм = 10-6 м), а 1 нанометр (нм) означает одну миллиардную долю метра (1 нм = 10-9 м).
Что же это такое – нанотехнологии?
Название нового направления в науке возникло просто в результате добавления к общему понятию «технология» приставки «нано». «Нано», так же как и «милли», и «микро», – приставки к выражениям единиц линейных размеров для создания производных этих единиц в системе СИ, причем в сторону уменьшения линейных размеров: например, 1 миллиметр (мм) означает одну тысячную долю метра (1 мм = 10-3 м), 1 микрометр (другое название – микрон) составляет одну миллионную долю метра (1 мкм = 10-6 м), а 1 нанометр (нм) означает одну миллиардную долю метра (1 нм = 10-9 м).
Для наглядности можно указать, что 1 нм составляет одну миллионную долю миллиметра (представим себе любой измеритель длины с делениями – линейки, рулетки, штангенциркули и т. п.), и если считается, что человеческий волос имеет в среднем диаметр 100 мкм, то 1 нм примерно в 100 тысяч раз меньше его толщины. Или еще можно сказать так: величины, измеряемые в нанометрах, на 9 порядков меньше величин, сравнимых по размерам с человеческим телом.
К нанотехнологиям принято относить процессы и объекты с характерной длиной от 1 до 100 нм. Верхняя граница нанообласти соответствует минимальным элементам в так называемых БИС (больших интегральных схемах), широко применяемым в полупроводниковой и компьютерной технике. Что касается нижней границы, то размером в 1 нм и около того обладают отдельно взятые молекулы; при этом интересно, что радиус знаменитой двойной спирали молекулы ДНК равен 1 нм, а многие вирусы имеют размер приблизительно 10 нм.
Для понятия «нанотехнология», пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии, оперирующие величинами порядка нанометра, имеют дело с ничтожно малыми величинами, в сотни раз меньшими длины волны видимого света и сопоставимыми с размерами атомов. Поэтому переходот «микро» к «нано» – это уже не количественный, а качественный переход, скачок от манипуляции веществом к манипуляции отдельными атомами. Квантовая физика XX в. при изучении объектов микромира оперировала в основном их математическими моделями. Теперь ученые могут оперировать объектами микромира непосредственно: искусственно создавать микрообъекты, перемещать их в пространстве, закреплять их на поверхности, то есть действовать так, как будто мы имеем дело с привычными нам макрообъектами.
В научных центрах мира развитие нанотехнологий как технологий изготовления сверхмикроскопических конструкций из мельчайших частиц материи идет в основном по трем направлениям: изготовление электронных схем (в том числе и объемных) с активными элементами, величиной примерно со среднюю молекулу; разработка и изготовление наномашин, то есть механизмов и роботов такого же размера; непосредственная манипуляция атомами и молекулами и сборка из них всего сущего. Именно поэтому они представляются весьма перспективными для получения новых конструкционных материалов, полупроводниковых приборов, устройств для записи информации, ценных фармацевтических препаратов и т. д. Нанотехнологии могут привести мир к новой технологической революции и изменить среду обитания человека.
Из сказанного ясно, что нанотехнологии объединяют все связанные непосредственно с атомами и молекулами технические процессы, осуществляемые и изучаемые в разных естественных науках. Тем самым подчеркивается междисциплинарный характер нового направления в естествознании. Наряду с другими междисциплинарными научными направлениями в естествознании – синергетикой, кибернетикой, системным методом – развитие нанотехнологий является очень ценным научным наследием XX в., неким связующим звеном, обеспечивающим преемственность научных направлений в современном естествознании.
По мнению многих источников по истории естествознания, начало нанонауки положил в 1959 г. знаменитый американский физик, лауреат Нобелевской премии РичардФ. Фейнман при прочтении лекции под названием «Внизу полным-полно места». В ней впервые была рассмотрена возможность создания веществ (а затем, естественно, отдельных элементов, деталей и целых устройств) совершенно новым способом, а именно «атомной укладкой», при которой человек манипулирует нужными атомами поштучно, располагая их в требуемом ему порядке.
В 1986 г. американский физик Эрик К. Дрекслер в своей известной книге «Машины творения» предложил создавать устройства, названные им «молекулярными машинами», и раскрыл удивительные возможности, связанные с развитием нанотехнологии. Начиная с 1980 г. в технологии производства транзисторов и лазеров все чаще стали использоваться искусственно создаваемые пленки толщиной около 10 нм, что позволяло изготавливать устройства с новыми, повышенными техническими характеристиками. В 1980 г. в Японии был изготовлен первый полевой транзистор с высокой подвижностью носителей (High Electron Mobility Transisteor, HEMT).
В 1981 г. сотрудники фирмы IBM создали
сканирующий туннельный микроскоп
(СТМ), позволявший получать изображение
с разрешением на уровне размеров
отдельных атомов. Это явилось
исключительно важным научным достижением,
поскольку исследователи
Работая со сканирующим микроскопом описываемого типа, экспериментаторы неожиданно вышли на следующий этап развития, а именно стали проводить прямые технологические операции на атомарном уровне. Прикладывая к зонду СТМ соответствующее напряжение, его можно использовать в качестве своеобразного атомного «резца» или гравировального инструмента. Впервые это удалось сделать в США сотрудникам Армаденской лаборатории 1MB под руководством Д. Эйглера, которые сумели выложить на поверхности монокристалла никеля название своей фирмы из 35 атомов ксенона. Это стало своеобразным рекордом в методах миниатюризации записи «текста». Позднее, в 1991 г., из этого выросла методика перемещения атомов ксенона вверх-вниз (относительно поверхности монокристалла), названная атомным переключением (atomic switch). В целом описанная техника создает много возможностей как для манипуляций на уровне отдельных атомов, так и для изучения их структур и поведения.
Японские фирмы и научные организации в свою очередь начали энергично развивать методики в области микроскопии, в результате чего за короткое время были созданы новые типы сканирующих туннельных микроскопов, а также электронных микроскопов с очень высоким разрешением (разрешением оптического прибора физики называют размер наименьшей детали, которую можно выделить на получаемом изображении), позволяющих исследовать движение отдельных атомов и молекул. Это привело к энергичному развитию экспериментальной техники в нанометровом диапазоне и значительно расширило представления ученых о микромире и нанообъектах.
В 1990 г. началась реализация огромного международного проекта по определению последовательности укладки около 3 млрд нуклеотидных остатков в записи генетической информации – проекта «Геном человека», ставшего ярким прорывом в биологии и медицине. Этот проект одновременно является исключительно важным для развития нанотехнологий, поскольку открывает новые огромные возможности в информационных технологиях, позволяя понять, а затем и использовать принципы обработки информации в живой природе (биоинформатика). В 1991 г. в Японии начала осуществляться первая государственная программа по развитию техники манипулирования атомами и молекулами (проект «Атомная технология»), которая привлекла внимание исследователей во многих странах мира. Это ознаменовало новый этап в развитии нанонауки и нанотехнологий: государство стало поддерживать направление, признав его приоритетность не только для национальной науки, но и для государства в целом.
В настоящее время нанотехнологии все больше и больше входят в нашу жизнь. Нанотехнологический контроль изделий и материалов, буквально на уровне атомов, в некоторых областях промышленности стал обыденным делом. Реальный пример – DVD-диски, производство которых было бы невозможно без нанотехнологического контроля матриц. Очень популярны в промышленных устройствах очистки питьевой воды и получении сверхчистой воды так называемые нанофильтрационные мембранные фильтры, позволяющие задерживать частицы молекулярного размера. Стали реальностью квантовые точки в технологии получения полупроводников, которые эффективнее известных в 1000 раз. Этот список можно продолжить:
♦ «нанотрубки» и «нанонити» («нановолокна»), состоящие из 6070 молекул, как новое состояние поверхности вещества и создание сверхлегких материалов;
♦ нанозеркало для лазеров со сверхвысокой отражающей способностью;
♦ атомная игла – сверхтонкая игла, сужающаяся на острие едва ли не до единственного атома, которая как атомный щуп изучает рельеф поверхности на молекулярном уровне;
♦ нанороботы-манипуляторы, создающие разные типы поверхностей путем переноса отдельных молекул;
♦ наногенераторы электрического заряда внутри человеческого организма для электропитания имплантатов;
♦ сверхскоростной нано-Интернет с потенциалом увеличения скорости в сотни раз;
♦ диагностика качества пищевых продуктов с помощью наносенсоров (квантовых точек) для выявления опасных химических или биологических загрязнителей пищевых продуктов;
♦ наногранулы, которые внутри человеческого тела доставляют молекулу лекарственного препарата не просто к органу-мишени, но прямо к рецептору, который, по сути, также является молекулой и отвечает за реализацию физиологического эффекта;
♦ нанокод, то есть молекулы антител, иммобилизованные на поверхности нанонитей для идентификации антигенов (то есть чужеродных веществ) по иммунной реакции;
♦ наночастицы косметического крема, проходящие через мембраны клеток кожи, для настоящего клеточного питания дермы – и это далеко не полный перечень использования нанотехнологий в мире XXI в.
Что-то из вышеперечисленного уже становится реальностью «на глазах», поскольку скорость технического прогресса в современном мире огромна; что-то еще находится в стадии доработки. Важно, что уже сейчас все это работает и приносит огромную пользу.
А потенциальные возможности
В связи с этим необходимо отметить
государственное участие в
История развития нанотехнологий
Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Там внизу много места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.
Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап — полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать любое число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле — таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Принципиальный недостаток такого робота — принципиальная невозможность создания механизма из одного атома.
Изложенные Фейнманом в лекции
идеи о способах создания и применения
таких манипуляторов совпадают
практически текстуально с
В широко известном произведении русского писателя Н. Лескова «Левша» есть любопытный фрагмент:
Если бы, — говорит, — был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, — говорит, — увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал
Увеличение в 5 000 000 раз обеспечивают современные электронные и атомно-силовые микроскопы, считающиеся основными инструментами нанотехнологий, таким образом, литературного героя Левшу можно считать первым в истории нанотехнологом.