Многомерные пространства и физика

Автор: Пользователь скрыл имя, 27 Марта 2012 в 05:56, контрольная работа

Краткое описание

Пространство — понятие, используемое (непосредственно или в составе сложных терминов) в естественных языках, а также в таких разделах знания, как философия, математика, физика и т. п. На уровне повседневного восприятия пространство интуитивно понимается как арена действий, общий контейнер для рассматриваемых объектов, сущность некоторой системы. С геометрической точки зрения, термин «пространство» без дополнительных уточнений обычно обозначает трёхмерное евклидово пространство.
В физике пространством называют ту «арену действий», на которой разворачиваются физические процессы и явления и которую мы субъективно ощущаем как «вместилище

Оглавление

Введение……………………………………………………………………..2стр.

1. О многомерности пространства………………………………………3стр.

2. Пространства и временя, мультиверс, гравитация………………3стр.

3. Многомерные пространства микромира…………………………..11стр.

4. Многомерные пространства Вселенной………………………….14стр.

Вывод……………………………………………………………………..16стр.

Список использованной литературы………………………………..18стр.

Файлы: 1 файл

КСЕ.doc

— 125.50 Кб (Скачать)

 

 

 

3. Многомерные пространства микромира

 

Будем исходить из того, что пространство и время – это диалектические противоположности. Диалектическое единство пространства и времени образует материю. Чем больше в материи пространства, тем меньше в ней времени, и наоборот. Одномерная материя образована одномерным пространством и одномерным временем; двумерная материя образована двумерным пространством и двумерным временем и т, д. Эта важнейшая симметрия оставалась до сих пор незамеченной, главным образом из-за того, что многомерность времени никак не проявляется, если рассматриваются процессы, происходящие в пространстве одного какого-либо измерения. Многомерность времени проявляется при сравнении процессов, происходящих в пространствах различной размерности. Чтобы соблюдался принцип относительности и чтобы физические процессы протекали одинаково в пространствах различной размерности, время должно быть многомерным.

Многомерность времени вытекает из закона сохранения материи, основанном на всем предшествующем опыте физики и утверждающем, что количество материи не изменяется при любых пространственно-временных преобразованиях. Никому еще не удалось дать определение понятиям «пространство» и «время», а вот дать определение понятию «материя» мы уже можем: материя – это физическая величина, равная произведению количества содержащегося в ней пространства на количество содержащегося в ней же времени.

Материя может находиться в различном качественном состоянии. Качественное состояние материи определяется ее размерностью n . Многообразие окружающего нас мира объясняется многообразием (многомерностью) различных состояний материи.

Примем за геометрическую модель неискривленного одномерного пространства прямую линию. В этом случае примером одномерного искривленного пространства переменной кривизны может служить, например, гипербола. Важно отметить, что гипербола не может существовать вне бесконечного неискривленного пространства – плоскости.

Поверхность шара – это уже модель двумерного равномерно искривленного замкнутого пространства, и такое пространство может существовать только в абсолютном неискривленном трехмерном пространстве Ньютона.

Существующее в настоящее время многообразие элементарных частиц иногда сравнивают с зоопарком. Почему так? Потому, что подобно тому, как в зоопарке клетки животных расставлены в случайном порядке, так и элементарные частицы классифицируются самым произвольным образом. Не существует даже критерия, по которому можно было бы определить, является ли рассматриваемая частица действительно элементарной.

Частицы, обладающие массой покоя, построены из квантов двумерного пространства. В теории многомерных пространств доказывается, что масса – это количество двумерного пространства, которое получается из трехмерного пространства при приближении скорости его движения к скорости света, а одномерное пространство получается из двумерного при разгоне последнего до скорости света.

Пространственно-временные преобразования имеют наглядную аналогию в классической физике. Представим себе водяной пар с температурой выше 100 градусов. Молекулы пара могут, как угодно перемещаться в пространстве и обладают максимально возможной степенью свободы. Начнем охлаждать пар. При температуре 100 градусов пар превратится в воду. Молекулы пара потеряют одну степень свободы, они не смогут удаляться на любое расстояние друг от друга. Физики скажут, что в паре совершился фазовый переход первого рода.

Продолжим охлаждение. При температуре ноль градусов вода превратится в лед. Молекулы воды займут строго определенное положение в кристаллической решетке и лишатся еще одной степени свободы. Физики опять скажут, что совершился фазовый переход первого рода, но на этот раз – в воде. Точно так же и с пространством совершаются пространственно-временные преобразования, только происходят они не при изменении температуры, а при достижении пространством скорости света, и «замораживаются» не степени свободы, а число измерений пространства.

В теории многомерных пространств удалось вычислить размеры квантов пространств различного числа измерений. Фундаментальная квантовая длина оказалась равной отношению постоянной Планка к квадрату скорости света и составляет 7,37х10-51метра, электромагнитный радиус электрона 8,1х10-21метра, дефект массы электрона 2,63х10-33кг, а квант температуры 1,54х10-40 градуса. Расстояния, менее фундаментальной квантовой длины, а также температуры, менее кванта температуры не имеют физического смысла, а наличие дефекта массы у электрона указывает на его сложную внутреннюю структуру. Разумеется, в стандартной модели, рассматривающей электрон как точку, ни о каком дефекте массы не может быть и речи.

Наряду с минимальными порциями (квантами) пространства, теорией выявлены максимальные порции пространства и времени, не существует, например, физических величин пространства второго измерения (массы) более 7,06х1062 килограммов, а максимальный период колебаний в нашем трехмерном пространстве не может быть больше, чем 18,9 миллиардов лет.

Одномерное пространство (струна) обладает огромной внутренней энергией связи одномерных квантов. В одном метре струны заключена энергия, равная энергии 52 тонн вещества, если вещество превратить в энергию по формуле Эйнштейна. Для сравнения: во время американской атомной бомбардировки Хиросимы в энергию было преобразовано менее 10 граммов вещества.

Согласно модели микромира, электрон должен постоянно совершать пространственно-временные переходы из пространства второго измерения, где он обладает массой, в пространство первого измерения, где он обладает зарядом. В ходе таких пространственно-временных преобразований постоянным остается лишь произведение заряда электрона на его массу. Мы не можем одновременно замерить и заряд, и массу электрона, мы замеряем только их средние значения. Интересно, что произведение радиуса электрона на его массу оказалось численно равным фундаментальной квантовой длине.

К безусловным достижениям теории многомерных пространств следует отнести установление инвариантности (идентичности) законов механики, квантовой механики, электродинамики и термодинамики. Все физические законы являются частными случаями самых общих законов пространственно- временных преобразований. Инвариантность физических законов позволяет из множества возможных описаний физических процессов выбрать описание, дающее наибольшую наглядность или выбрать несколько описаний, обеспечивающих всестороннее изучение явления или процесса. Например, инвариантность законов электродинамики и аэро-гидродинамики позволяет составить представление о внутреннем устройстве элементарных частиц.

Заветной мечтой Эйнштейна было найти физические законы, одинаково справедливые в любых системах отсчета. Поискам таких законов он посвятил последние тридцать лет своей жизни, но успеха так и не добился. В противоположность идеям Эйнштейна, теория многомерных пространств отыскивает и главное, находит системы отсчета, в которых имеет место инвариантность известных физических законов. 

В физике макромира теория измерения времени и пространства находится в согласии с ее теоретическими принципами и понятиями, поскольку теория измерения разработана для процедуры, осуществляемой в условиях макромира, и ее абстракции являются во многом абстракциями от твердых тел и их движения. Так что в отличие от общей теории относительности и квантовой физики в этой области нет трудностей в согласовании языка теории и языка экспериментальной деятельности.

Микромир не является тем миром, в котором мы можем измерять процессы с помощью часов, а объекты с помощью линеек, он не является миром человеческого опыта. Вместе с тем экспериментальная деятельность и в этом случае осуществляется людьми с помощью приборов и установок макроскопического характера. Для этого понадобятся классические конструкции времени и пространства. Но это будет только одна понятийная структура в квантовой физике. Назовем ее эмпирической. Будет и вторая понятийная структура - собственно квантово-механическая. При этом собственно квантово-механические пространство и время будут конструироваться чисто теоретическими средствами с использованием абстрактных математических пространств.

 

 

 

4. Многомерные пространства Вселенной

 

Для понимании устройства Вселенной и ее материи необходимо понять простые и естественные принципы. Вселенная существует миллиарды лет, и все ее связи и физические законы действуют безупречно и очень надежно, следовательно:

- Вселенная не может строиться по ненадежным сложным схемам, а построена по очень простым принципам. Все гениальное - просто, следовательно, надежно;

- Если что-то или какая-то схема, принцип присутствуют в природе, апробированы самой жизнью миллиарды лет, показав себя надежно, то в сходных обстоятельствах нужно применять подобные схемы - в природе Вселенной все взаимосвязано, все строится по единым признакам подобия, - и в большом, и в малом.

В последнее время в космологии все чаще применяются многомерные модели Вселенной. Связано это в первую очередь с тем, что в обычных моделях, имеющих три пространственных и одно временное измерение, не соблюдается закон сохранения энергии. Оказывается, сохранить энергетическое равновесие удается лишь во Вселенной, которая  многомерна и асимметрична – представляет собой единое неразрывное целое из: по одним данным не менее 11 измерений по другим семи пространств – одного нематериального и шести материальных, различных по материи, уровню энергии и степени сжатия пространств.

Все пространства объединены единой и неизменной для всех пространств величиной – временем, как векторной функцией, имеющей во всех пространствах одинаковую скорость и направленность. Отличия материи пространств – по направленности и комбинации векторов спинового (торсионного) поля пространства и его элементарных частиц. Это важнейшая особенность строения многомерной Вселенной: относительность ориентации векторов пространств замыкает энергетику пространства в самом себе, не позволяя энергии свободно перетекать в нижележащее пространство, менее энергоемкое.

Вывод А.Эйнштейна гласит: в зависимости от гравитационных масс время замедляется или, напротив, ускоряется, а пространство искривляется. Кривизна пространства измеряется отклонением от классических правил геометрии Евклида. Так, например, в евклидовой геометрии предполагается, что сумма углов треугольника составляет 180°. Однако сумма углов треугольника, изображенного на поверхности сферы, больше 180°, а на седловидной поверхности -- меньше 180°. Поверхность сферы в неевклидовой геометрии называется поверхностью положительной кривизны, а поверхность седла -- отрицательной. Величина поля тяготения в каждой точке пространства зависит от его кривизны. Инерциальное движение точки в таком пространстве осуществляется не прямолинейно и равномерно, а по геодезической линии искривленного пространства. Оказалось, что метрика пространства - времени зависит от силы гравитационного поля, которое создается веществом. Массы вещества создают особое поле тяготения, материя влияет на свойства пространства и времени. Например, было установлено, что на Солнце все происходит медленнее, чем на Земле, из-за более высокого гравитационного потенциала на его поверхности. В 1919г. во время солнечного затмения наблюдалось отклонение луча света вблизи поверхности Солнца, что свидетельствовало об изменении свойств пространства.

С помощью многомерных моделей удалось вычислить размеры Вселенной и ее возраст, установлен закон гравитационного отталкивания, выявлена внутренняя структура звезд и черных дыр, найдена причина торможения космических аппаратов за пределами Солнечной системы и многое другое. Трехмерное пространство следует изучать из пространства четырехмерного, что и сделал Эйнштейн в общей теории относительности. Специальную теорию относительности, которая экспериментально подтверждается в двумерном пространстве микромира, тем не менее, нельзя применять для изучения трехмерного пространства и для определения одновременности событий. Согласно теории многомерных пространств, наблюдая Вселенную из четырехмерного пространства, мы увидим очень медленно сжимающуюся сферу крошечных размеров. Наблюдая Вселенную из пятимерного пространства, мы увидим окружность очень малого переменного радиуса. Одномерные пространства с 80-х годов прошлого века изучает теория суперструн. В настоящее время эта теория изучает процессы изменения размерности пространств и называется М-теорией.

Теория многомерных пространств не является в настоящее время общепризнанной физической теорией, но она обладает предсказательной силой и допускает экспериментальную проверку.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вывод:

 

В XX в. на основе идей теории относительности две указанные раз­розненные проблемы объединились в одну – проблему четырехмерности реального пространства-времени (см. дополнение А). Развитие современ­ных квантовых теорий, оперирующих понятиями пространств более вы­сокой размерности, обострило проблему теоретического обоснования числа измерений реального пространства-времени, вновь поставило во­прос: почему пространство и время имеют ту или иную размерность и чем обусловлено число измерений? Одной апелляции к эмпирическим фактам здесь недостаточно. Задача науки не только открывать факты, но и объяснять их. Научное объяснение заключается в том, чтобы из немно­гих основных законов выводить все многообразие фактов. Однако на се­годня положение таково, что какую бы физическую теорию мы ни рас­сматривали, факт числа измерений пространства и времени из нее не вы­водятся, наоборот, любая физическая теория сама исходит из этого факта. Тем самым попытки ответить на их основе на вопрос: «почему это так, а не иначе?» – оказываются заведомо тщетными. Очевидно, что это свойст­во пространства и времени – наиболее глубокое, фундаментальное свой­ство познаваемого нами реального мира. Объяснение данного свойства чрезвычайно важно для всей научной картины мира, для всего нашего познания.

Информация о работе Многомерные пространства и физика