Автор: Пользователь скрыл имя, 20 Апреля 2012 в 13:38, контрольная работа
Цель данной работы изучить различные космологические модели вы-дающихся советских естествоиспытателей и современные космологические теории о происхождении Вселенной.
1. Введение 3
2. История космологии 4
3. Космологические модели советских естествоиспытателей
3.1 В.А. Амбарцумян 7
3.2 Школа Зельдовича—Новикова 10
3.3 О.Ю. Шмидт 12
3.4 А.Л. Зельманов 15
3.5 В.Л. Гинзбург 17
3.6 С.Т. Мелюхин 18
4. Классическая космологическая модель 20
5. Современная космология и космогония 22
6. Заключение 24
7. Список литературы 25
8. Приложение 26
4
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»
Оренбургский филиал
Специальность Финансы и кредит
Шифр Ф10-59с
Курс 1
КОНТРОЛЬНАЯ РАБОТА
по дисциплине: Концепция современного естествознания
тема: Космология и космогония. Космологические модели Вселенной.
Выполнила: Шастина Елена Владимировна
Проверил: Засидкевич Игорь Владимирович
«___» апреля 2011 г.
г. Оренбург
Содержание
1. Введение 3
2. История космологии 4
3. Космологические модели советских естествоиспытателей
3.1 В.А. Амбарцумян 7
3.2 Школа Зельдовича—Новикова
3.3 О.Ю. Шмидт 12
3.4 А.Л. Зельманов 15
3.5 В.Л. Гинзбург 17
3.6 С.Т. Мелюхин 18
4. Классическая космологическая модель 20
5. Современная космология и космогония 22
6. Заключение 24
7. Список литературы 25
8. Приложение 26
4
1. Введение
Различные ответы на основные вопросы, которые космология и космогония задают о происхождении и структуре Вселенной, всегда содержали следствия для философских и религиозных систем. Обычно связи между эмпирическими исследованиями Вселенной с одной стороны, и метафизическими системами — с другой, были значительно менее непосредственными, чем это предполагалось защитниками или оппонентами этих систем, но тем не менее имели место напряженные споры. Довольно трудно представить, например, какое либо научное доказательство, которое могло бы «подтвердить» или «опровергнуть» позицию человека, заявляющего о существовании Бога и имеющего в распоряжении аргументы хотя бы умеренной степени изощренности. Сходно с этим было бы трудно представить подтверждение или опровержение позиции просвещенного материалиста, утверждающего об исключительно естественном происхождении и эволюции космоса. Тем не менее, отдельные виды доказательств со временем заметно повлияли на правдоподобность версий этих различающихся аргументов, и они, в свою очередь, развивались, отвечая на брошенные им вызовы.
Хотя современные космологические теории часто обсуждаются в популярных статьях так, как будто существуют только две соперничающие модели — «большой взрыв» и «стационарное состояние»,— в последние 60 лет было предложено гораздо больше моделей, из которых более десятка получили признание среди космологов, достаточное для того, чтобы иметь общепризнанные названия.
Цель данной работы изучить различные космологические модели выдающихся советских естествоиспытателей и современные космологические теории о происхождении Вселенной.
Методологической основой исследования являются труды – В.А. Амбарцумяна, О.Ю. Шмидта, А.Л. Зельманова, В.Л. Гинзбурга, С.Т. Мелюхина и школы Зельдовича - Новикова.
2. История космологии
Космоло́гия (космос + логос) — раздел астрономии, изучающий свойства и эволюцию Вселенной в целом. Основу этой дисциплины составляет математика, физика и астрономия. В своих задачах она часто пересекается с философией и богословием. Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира. В китайской космологии считалось, что Земля — своего рода чаша, прикрытая небом, состоящая из полусфер, вращающихся на очень низком расстоянии от Земли.
Античность. Большинство древнегреческих учёных поддерживали геоцентрическую систему мира, согласно которой в центре Вселенной находится неподвижная шарообразная Земля, вокруг которой обращаются пять планет, Солнце и Луна. Предложенная Аристархом Самосским гелиоцентрическая система мира, по-видимому, не получила поддержки большинства древнегреческих астрономов. Мир считался ограниченным сферой неподвижных звёзд. Иногда добавлялась ещё одна сфера, отвечающая за прецессию. Предметом споров был вопрос о том, что находится за пределами мира: перипатетики вслед за Аристотелем полагали, что вне мира нет ничего (ни материи, ни пространства), стоики считали, что там находится бесконечное пустое пространство, атомисты (Левкипп, Демокрит, Метродор, Эпикур, Лукреций) полагали, что за пределами нашего мира находятся другие миры. Особняком стоят взгляды Гераклида Понтийского, согласно которому звёзды являются далёкими мирами, включающими в себя землю и воздух. Атомисты и Гераклид полагали Вселенную бесконечной. На закате античности появилось религиозно-мистическое учение герметизм, согласно которому вне мира может находиться область нематериальных существ — духов. Многие досократики полагали, что движением светил управляет гигантский вихрь, давший начало Вселенной. Oднaко после Аристотеля большинство античных астрономов считали, что планеты переносятся в своём движении материальными сферами, состоящими из особого небесного элемента — эфир, свойства которого не имеют ничего общего с элементами земли, воды, воздуха и огня, составляющих «подлунный мир». Широко было рапространено мнение о божественной природе небесных сфер или светил, их одушевлённости.
Средневековье. Средние века в астрономии и философии как христианских, так и мусульманских стран доминировала космология Аристотеля, дополненная птолемеевой теорией движения планет, вместе с представлением о материальных небесных сферах. Некоторые философы XIII—XIV вв. считали, что бесконечно всемогущий Бог мог создать, помимо нашего, и другие миры; тем не менее, эта возможность считалась сугубо гипотетической: хотя Бог и мог создать другие миры, он не сделал этого. Некоторые философы (например, Томас Брадвардин и Николай Орем) считали, что за пределами нашего мира находится бесконечное пространство, служащее обителью Бога (модификация космологии герметистов, также полагавших внемировое пространство относящимся к духовной сфере).
Эпоха Возрождения. Новаторский характер носит космология Николая Кузанского, изложенная в трактате Об учёном незнании. Он предполагал материальное единство Вселенной и считал Землю одной из планет, также совершающей движение; небесные тела населены, как и наша Земля, причём каждый наблюдатель во Вселенной с равным основанием может считать себя неподвижным. По его мнению, Вселенная безгранична, но конечна, поскольку бесконечность может быть свойственна одному только Богу. Вместе с тем, у Кузанца сохраняются многие элементы средневековой космологии, в том числе вера в существование небесных сфер, включая внешюю из них — сферу неподвижных звёзд. Однако эти «сферы» не являются абсолютно круглыми, их вращение не является равномерным, оси вращения не занимают фиксированного положения в пространстве. Вследствие этого у мира нет абсолютного центра и чёткой границы (вероятно, именно в этом смысле нужно понимать тезис Кузанца о безграничности Вселенной). Первая половина XVI века отмечена появлением новой, гелиоцентрической системы мира Николая Коперника. В центр мира Коперник поместил Солнце, вокруг которого вращались планеты (в числе которых и Земля, совершавшая к тому же ещё и вращение вокруг оси). Вселенную Коперник по-прежнему считал ограниченной сферой неподвижных звёзд; по-видимому, сохранялась у него и вера в существование небесных сфер. Модификацией системы Коперника была система Томаса Диггеса, в которой звёзды располагаются не на одной сфере, а на различных расстояниях от Земли до бесконечности. Некоторые философы (Франческо Патрици, Ян Ессенский) заимствовали только один элемент учения Коперника — вращение Земли вокруг оси, также считая звёзды разбросанными во Вселенной до бесконечности. Воззрения этих мыслителей несут на себе следы влияния герметизма, поскольку область Вселенной за пределами Солнечной системы считалась ими нематериальным миром, местом обитания Бога и ангелов.
Возникновение современной космологии. Возникновение современной космологии связано с развитием в XX веке общей теории относительности Эйнштейна и физики элементарных частиц. В 1922 году А. А. Фридман предложил решение уравнения Эйнштейна, в котором изотропная Вселенная расширялась из начальной сингулярности. Подтверждением теории нестационарной вселенной стало открытие в 1929 году Э. Хабблом космологического красного смещения галактик. Таким образом, возникла общепринятая сейчас теория Большого взрыва.
4
3. Космологические модели советских естествоиспытателей
Вселенная не слишком велика для
человека; она не превосходит ни
умственные возможности человека, ни
возможности человеческого духа.
Жорж Леметр
3.1 В.А. Амбарцумян
Возможно, никто из ведущих советских естествоиспытателей не высказывался откровеннее в пользу диалектического материализма, чем астрофизик Виктор Амазаспович Амбарцумян (1908 г. р.). Амбарцумян учился в Пулковской обсерватории у русского астронома А.А. Белопольского, после чего занимал значительные посты в Ленинградском университете, Академии наук Армянской ССР и АН СССР. Он руководил строительством известной Бюраканской астрофизической обсерватории недалеко от Еревана. За работы о фундаментальном значении звездной астрономии и космогонии Амбарцумян несколько раз награждался государственными премиями. Он стал одним из наиболее известных за рубежом советских ученых. В 1959 г. Амбарцумян заявил: «История развития человеческих знаний, каждый шаг вперед в науке и технике, каждое новое научное открытие неопровержимо свидетельствуют об истинности и плодотворности диалектического материализма, подтверждают правоту марксистско-ленинского учения о познаваемости мира, о величии и преобразующей силе человеческого разума, все глубже проникающего в тайны природы. В то же время достижения науки убедительно показывают полную несостоятельность идеализма и агностицизма, реакционность религиозного мировоззрения». Из его работ видно, что, хотя Амбарцумян считал создание системы мира преждевременным, он, в общем, отдавал предпочтение, как и многие советские астрономы, релятивистской, неоднородной, расширяющейся и бесконечной во времени космологической модели. Как диалектический материалист, Амбарцумян верил, что вся природа постоянно эволюционирует; он с подозрением относился к попыткам даже косвенного утверждения о существовании в природе неизменяемых образований. «Во Вселенной, которая существовала и будет существовать бесконечно долго, изменение массы звезд обусловлено главным образом непосредственным выбрасыванием вещества». Амбарцумян утверждал, что такое явление выбрасывания массы вещества звездами достаточно быстро приводит к значительным изменениям в их физическом состоянии. Его коллеги Д. Я. Мартынов, В. А. Крат и В. Г. Фесенков проводили работу по изучению результатов этого явления; Фесенков пытался проследить изменения в скорости вращения Солнца на этой основе. Таким образом, по словам Амбарцумяна, «одним из важнейших результатов работ советских астрономов является вывод о том, что звезды изменяются сами и изменяют окружающую их межзвездную среду». Амбарцумян верил, в противоположность нескольким ранним астрономическим воззрениям, что звезды заметно изменяются в массе и что они постоянно рождаются. Точные детали раннего этапа жизни звезд, согласно схеме Амбарцумяна, неизбежно неточны, как и большинство таких описаний. Однако главные положения могут быть названы. Исходя из того, что его описание основано на диаграмме Херцшпрунга—Рассела об отношении между спектральным типом звезд и их яркостями, необходимо кратко рассмотреть такую диаграмму. Все звезды имеют темные линии спектра, так же как и Солнце. Полосы поглощения в этих спектрах не только показывают состав звезд, но также позволяют классифицировать их по различным группам, с последовательной градацией между разными типами. Стандартными типами являются: О, В, А, F, G, М, К, R, N и S. Звезды также могли быть классифицированы по их абсолютным яркостям, где единицей яркости была яркость Солнца. Если эти звезды расположить на графике, где абсциссе будет соответствовать спектральный тип, а ординате — яркость, окажется, что они укладываются на диаграмме не случайно, а формируют группы, включая диагонально расположенный пояс, известный как главный ряд, который включает подавляющее большинство всех звезд.
Согласно этой схеме, звезды постоянно рождаются, но не из «ничего», как, по словам Амбарцумяна, это излагалось некоторыми зарубежными астрономами. Точные детали рождения звезд были одной из самых трудных проблем. Взгляды Амбарцумяна по этому вопросу хотя со временем претерпели некоторые изменения, отличались от мнения других советских астрономов. Из его уже изложенного положения о том, что звезды выбрасывают большое количество вещества за время своего жизненного цикла, вытекало наличие определенного количества вещества для дополнительного образования звезд. Амбарцумян полагал, что как живые организмы не могут быть сведены к известным принципам физики и химии, так же это справедливо и для Вселенной. Он утверждал, что свидетельством неадекватности объяснения современной физикой крупномасштабных явлений Вселенной выступает нахождение «сверхновой»: сейчас существуют причины полагать, что вызывающие эти взрывы процессы не могут быть объяснены в рамках существующих физических законов, хотя среди астрономов нет согласия по этому вопросу. Это же справедливо для источников энергии в квазарах, открытых в 1963 г. Амбарцумян полагал, что особенности природы, представленные в сверхновых, квазарах и пульсарах, ведут к революции в физике и что впервые со времен Коперника, Браге и Кеплера физика будет опровергнута данными астрономии. Но даже после того как революция произошла, Амбарцумян косвенно выразил свое остающееся скептическое отношение к тем, кто строил модели вселенной, так как, по его мнению, Вселенная была бесконечна в уровнях своих законов. Природа обладала бесконечностью в двух направлениях: на микроскопическом уровне субатомные частицы бесконечно неисчерпаемы, как это подчеркивал Ленин, и на макроскопическом уровне, где неисчерпаема сама Вселенная.
Подводя итоги, можно сказать, что основным и неизменным элементом в профессиональной жизни Амбарцумяна, начиная с его раннего акцента на рождении и эволюции звезд и кончая его поздним акцентом на такие быстро изменяющиеся явления Вселенной, как сверхновые и квазары, был принцип астрономической эволюции.
4
3.2 Школа Зельдовича — Новикова
В конце 70 — начале 80-х годов ХХ в. наиболее влиятельным в советской космологии было направление, представленное школой Я. Б. Зельдовича и И. Д. Новикова. Репутация этих ученых заметно возросла и на Западе, особенно после перевода на английский язык в 1983 г. двух их книг — «Строение и эволюция Вселенной» и «Эволюция Вселенной». Один советский философ естествознания подчеркивал в 1979 г. важность использования термина «сингулярное состояние» вместо «рождение Вселенной». «Сингулярное состояние в начале расширения Вселенной фиксирует крайний предел, до которого можно экстраполировать в прошлое известные нам фундаментальные физические теории и понятия. Но это не абсолютное «начало всего», а лишь одна из фаз бесконечного саморазвития материи. Она возникла пока не изученным наукой путем из каких-то предшествующих состояний движущейся материи». Зельдович и Новиков, несомненно, критиковали бы это заявление как пример онтологической версии диалектического материализма, которой они избегали, но их лексика была сообразной в большей степени взглядам философов-марксистов, чем многих их западных коллег. В советской тенденции избегать такие термины, как «рождение Вселенной», и в западной тенденции их использовать работают два разных типа идеологических влияний. Во многих отношениях, однако, Зельдович и Новиков идут полностью в ногу с западными космологами или опережают их. Они оба с энтузиазмом приветствовали в 1965 г. открытие «реликтового излучения», оставшихся радиопомех Большого взрыва. Новиков и его советский коллега А. С. Дорошкевич даже предсказали на год раньше уровень, на который реликтовое излучение будет превышать интенсивность микроволнового излучения радиогалактик. Зельдович и Новиков писали в 1983 г., что «в общих чертах современное состояние и ближайшее прошлое Вселенной можно считать известным». Эта Вселенная, продолжали они, является расширяющейся, однородной, изотропной Вселенной, в которой «каждая частица (или ее предки) вышла из горнила сингулярности». Под «сингулярностью» они понимали момент в начале расширения, когда Вселенная была сверхплотной и горячей. Другими словами, Новиков и Зельдович являются сторонниками варианта теории «большого взрыва» Вселенной. Вместе с диалектическим материализмом они (как Амбарцумян и многие другие советские космологи) противостояли теориям «творения материи». Но они критиковали Амбарцумяна за допущение, в соответствии с марксистским принципом существования «различных законов на различных уровнях бытия», о том, что более общее объяснение Вселенной потребует новой формы физики, которая выйдет за пределы ОТО.
Советские космологи в середине 80-х годов продемонстрировали удивительную способность согласовывать космологические модели с системой диалектического материализма. Эти попытки разрешить космологическую проблему, найти модель метагалактики, не нарушающую отдельных филоcофских принципов, не сильно отличались, по существу, от попыток многих зарубежных философов и естествоиспытателей. Когда американский философ Майкл Скривен говорил о «фазах Вселенной, предшествующих современному «расширению», или английский астроном-теоретик Вильям Боннер говорил о своем «предпочтении циклоидальной модели», они оба находились под значительным влиянием внеэмпирических соображений.Они оба искали модель, в которой определенное понятие бесконечности могло бы быть сохранено. Советскими космологами двигали сходные стремления.
4
3.3 О. Ю. Шмидт
Одним из первых ведущих советских исследователей планетарной космогонии был Отто Юльевич Шмидт (1891—1956). Шмидт наиболее известен космогонистам своей теорией о происхождении Земли и планет, опубликованной в 1949 г. в виде четырех лекций. Так как Шмидт ограничился рассмотрением Солнечной системы, то он не исследовал какие-либо из крупномасштабных проблем теорий Вселенной, такие, как относительность или красное смещение. Но, тем не менее, он рассматривал свою схему в рамках противостояния мировоззрений. В своей первой лекции он писал: «История космогонии становится осмысленной и глубоко поучительной, если рассматривать ее как борьбу материализма с идеализмом, борьбу, которая не прекращается ни на одном этапе». Шмидт утверждал, что его теория захвата Солнцем газопылевого облака поддерживалась диалектической концепцией.
Позиция Шмидта в космогонии основывалась на признании значимости небулярных гипотез Канта и Лапласа для современной науки. Согласно этим хорошо известным теориям (которые различались по некоторым аспектам), Солнце и планеты образовались из последовательной конденсации диффузной массы вещества в дискретные тела. Хотя гипотезы Канта и Лапласа завоевали широкую популярность в XIX в., к началу XX в. они испытали серьезные удары вследствие неспособности рассчитать угловой момент. Одной из наиболее странных характеристик Солнечной системы является то, что главные планеты, имеющие менее 1/755 от общей массы системы, тем не менее, обладали 90% ее углового момента. С другой стороны, Солнце, обладающее почти всей массой, имеет всего лишь 2% углового момента. Соответствующая дилемма, астрономов была описана в 1935 г. X. Н. Расселом: «Никто никогда не предлагал пути, в котором почти весь угловой момент переходил бы в такую незначительную часть массы изолированной системы». После 1900 г. были выдвинуты различные виды «приливных» теорий, чтобы объяснить этот феномен. Сущностью приливных теорий была гипотеза о том, что к Солнцу приближалась какая-то звезда настолько близко (возможно, произошло даже касательное столкновение), что солнечный материал был вытянут в космическое пространство. Из этого вещества позднее сформировались планеты. Согласно версиям Чемберлена и Моултона, выброс материала имел место с противоположных сторон — как Солнца, так и звезды в виде сильнейших приливов; в версиях, выдвинутых Дж. Джинсом и Г. Джеффрисом, сигарообразный поток был растянут между звездой и Солнцем. Сигарообразная форма потока (утолщающаяся в середине) объясняет большие размеры планет Юпитера и Сатурна. Шмидт полагал, что популярность теории Джинса в планетарной космогонии в 20—30-е годы была связана с социальными факторами. Связью между объяснением Джинса создания планет и буржуазными ценностями, по мнению Шмидта, был упор на редкий характер участвующих в этом событий и связанную с этим сверхъестественную ауру Вселенной, которую использовал Джинс. Сближение Солнца и звезды, достаточно близкое для описываемых Джинсом и другими сторонниками приливных теорий, должно быть исключительно редким событием. Ясно, что ученые предпочли бы не основываться на исключительно редких явлениях для объяснения природы; если же редкость явления приближается к уникальности, то явление проявляет тенденцию к выходу за пределы области событий, объясняемых научными законами, которые зависят от повторяемости. Естественно, касание двух звезд не было бы уникальным при условии достаточного времени, но уже одно высказывание о том, что образование Земли есть очень редкое, а не уникальное явление, вызвало бы некоторый дискомфорт у астрономов. Это были годы, когда «возраст» Вселенной многими астрономами оценивался лишь в несколько миллиардов лет; таким образом, планетарные системы были бы действительно очень редкими. Проблема здесь в том, что астрономы называют «затруднением привилегии». Если планетарная система очень особенная, то особенными будут и населяющие ее люди. Постоянно, начиная со времени дискредитации системы Птолемея, любой вид антропоцентризма рассматривался большинством ученых как подозрительный. Шмидт рассматривал теорию Джинса как легкомысленное, возможно даже преднамеренное, возвращение к этой традиции. Шмидт полагал, что для объяснения происхождения планетарной системы необходимо отбросить приливные теории и разрабатывать неадекватные, но тем не менее многообещающие гипотезы Канта и Лапласа. Основная идея этих систем — образование планет из диффузной материи — казалась ему более заслуживающей доверия, чем сближение и столкновение звезд. Он постулировал, что Солнце в своем вращении прошло через облако пыли, газа и другой материи. Это облако имело собственный момент количества движения. В результате взаимодействия различных моментов, по мнению Шмидта, могло возникнуть имеющее место в Солнечной системе особенное распределение материи. Он писал: «если бы Солнце, пройдя сквозь облако или вблизи него, могло «захватить» с собою часть вещества, увлекая его за собою, то Солнце оказалось бы окруженным таким облаком, из которого в дальнейшем образовались планеты. При таком происхождении облака отпадает трудность с распределением момента количества движения. Этот момент явился бы результатом перераспределения момента количества движения Галактики. А именно: тот момент, которым встречное облако обладало по отношению к проходящему Солнцу, сохранился бы в соответствующей доле в захваченной части облака». Оставалась проблема вероятности событий, возможно, одного из главных преимуществ системы Шмидта над системой Джинса с философской точки зрения. Шмидт указывал, что, если захват возможен в ситуации с тремя телами, он также возможен и в приближенной схеме с любым их количеством больше двух, при условии определенных расстояний и скоростей. Более того, его сторонники выдвинули другие варианты захвата, включая воздействие столкновений и давления света. Тем не менее, основной вопрос об исключительности стадии рождения планетарных систем остался для Шмидта главной проблемой. Согласно его собственным философским убеждениям, возведенная им конструкция была довольно неуклюжей, хотя и превосходящей альтернативные.
Последняя часть жизни Шмидта была нескончаемой болезнью; прикованный туберкулезом к постели, он старался улучшить свою систему. В последние годы он обратился к механизму захвата на основе неупругих столкновений частиц как наиболее многообещающему направлению, но основные черты его системы остались неизменными.
4
3.4 А. Л. Зельманов
Одним из наиболее интересных советских авторов, пишущих о космологии, был Абрам Леонидович Зельманов (1913—1987), астроном-теоретик из Астрономического института им. П. К. Штернберга при МГУ. Ученик В. Г. Фесенкова, Зельманов с молодости интересовался применением общей теории относительности к астрономии. В отношении построения моделей его подход был чрезвычайно эклектичным и включал в себя возможность существования многих космологических моделей для разных областей Вселенной. Он стойко противостоял любым попыткам априорного отрицания как «замкнутых», так и «открытых» моделей. Он полагал, что зарубежные астрономы-теоретики слишком привержены заключению об однородности и замкнутости Вселенной. Зельманов, как и многие его современники, проявлял сильный интерес к диалектическому материализму. Как и Амбарцумян, он говорил о «качественно отличных» областях Вселенной, указывая на то, что различные физические силы господствуют на различных уровнях бытия. Так, отмечал он, наиболее определяющими силами на микроскопическом уровне являются негравитационные силы (так называемые «сильные», электромагнитные и «слабые» силы), в то время как на космическом уровне господствует сила гравитационная. Эти разные уровни, как в 1955 г. утверждал Зельманов, демонстрируют «диалектико-материалистические положения о неисчерпаемости материи и бесконечном многообразии природы». В 1964 г. Зельманов в своей статье отмечал, что, скорее, чем допускать однородность и изотропность Вселенной, необходимо отметить возможность существования неоднородной и анизотропной Вселенной. Согласно космологическому принципу, отмечал Зельманов, каким бы ни было искривление пространства (положительным, отрицательным, нулевым), оно должно оставаться постоянным, так как искривление вызывается количеством, распределением и движением материи; если допустить однородную везде Вселенную, то результирующее искривление будет константой независимо от своего знака.
В 1969 г. Зельманов попытался объединить свой взгляд на космологию и космогонию с концепцией всего физического знания; по его мнению, в природе существует «структурно -эволюционная лестница», расширяющаяся от субатомного уровня к Вселенной. Эта материальная, многообразная лестница имеет качественно различные уровни, но составляет взаимосвязанное целое. Ее наиболее отличительной характеристикой является не поддающееся представлению разнообразие. В самом деле, Зельманов рекомендовал ученым принять как «методологический принцип» тот взгляд, согласно которому в природе содержится все то многообразие условий и явлений, которое может иметь место, согласно принятым фундаментальным физическим теориям. Отсюда Зельманов эвристически представил присутствие в различных областях природы всех форм материи и всех космологических моделей, согласующихся с существующей физической теорией. Так как физическая теория со временем изменяется, то, в свою очередь, изменяется и этот гипотетический бесконечный резервуар с моделями, но Зельманов не видел причин для того, чтобы заранее исключить какую-либо модель.
Космическое фоновое излучение достаточно взволновало космологов с момента его открытия А. А. Пензиасом и Р. В. Вильсоном в 1965 г. Это излучение всё чаще интерпретировалось как остаток первозданного огненного шара, из которого произошла Вселенная. Развитие этой концепции придало достаточный вес аргументам тех космологов, которые придерживались модели Большого взрыва. Открытие пульсаров и квазаров также добавило ценную информацию в той области, в которой новые данные наблюдений получить очень трудно. Астрономические данные, полученные недавно из нескольких разных источников, заметно укрепили позиции тех теоретиков, которые отдавали предпочтение расширяющимся однородным и изотропным моделям Вселенной. Эти новые данные усложнили задачу диалектических материалистов, таких, как Амбарцумян, которые до того были на стороне неоднородных анизотропных моделей. С другой стороны, данные, поддерживающие скорее открытые, чем замкнутые модели, устраивали многих советских интерпретаторов космологии.
4
3.5 В.Л. Гинзбург
Одним из наиболее острых советских комментаторов отношений между физикой и философией в конце 70-х и в 80-х годах был академик В.Л. Гинзбург. Хотя Гинзбург и признает значительное улучшение интеллектуальной атмосферы в советской науке со времен Лысенко, он довольно ясно выражает свое мнение о сохранении отдельных опасных моментов.. Как специалист в области астрофизики, глубоко интересующийся проблемами космологии, Гинзбург уделял внимание следующим положениям издания этого учебника 1979 г., 300 тысяч экземпляров которого стали обязательным пособием для студентов многих университетов: «Материя бесконечна в своих пространственных формах бытия». «Всякие допущения конечности времени неизбежно ведут к религиозным выводам о сотворении мира и времени богом, что полностью опровергается всеми данными науки и практики». Гинзбург рассматривал такие утверждения, как отказ от закрытых космологических моделей «без всякой естественнонаучной аргументации». В этой связи в той же статье 1980 г. критиковал своего коллегу Амбарцумяна за то, что он сопровождал свои особые интерпретации астрономии ссылками на диалектический материализм. Гинзбург отмечал, что Амбарцумян и его «Бюраканская школа» (Бюраканская астрофизическая обсерватория, расположенная в 35 километрах от Еревана, была начальной базой Амбарцумяна) пытались показать на базе диалектического анализа, что современные астрономические данные не могут быть объяснены в рамках современной физики и что, следовательно, был необходим пересмотр основных физических понятий. Не называя Ленина, он почти процитировал ленинское положение о «неисчерпаемости электрона», допуская устройство материи наподобие «матрешки», которая может открываться до бесконечности. По этому вопросу Гинзбург имел разногласия со своим коллегой Барашенковым. признавал, что случай с кварками, расположенными ниже уровня электронов, завоевал все большее признание, но говорил, что возможность описания электрона как «состоящего» из более фундаментальных элементов есть вопрос физический, а не философский. Такие физические вопросы, продолжал он, должны рассматриваться как «открытые».
4
3.6 С.Т. Мелюхин
В 1958 г. советский философ С. Т. Мелюхин опубликовал книгу «Проблема конечного и бесконечного», в которой стремление марксистских философов принять релятивистские модели Вселенной выражается в гораздо большей степени, чем в предыдущие годы. Работа была переходом, мостом между прежней ортодоксией и новой готовностью, даже стремлением со стороны некоторых советских философов объединить диалектический материализм с фактуальными обсуждениями современных астрономических доказательств. В этой книге Эйнштейн совершенно серьезно представлен как защитник диалектического материализма. Такое представление об Эйнштейне будет в позднейшие годы набирать силу. Тем не менее мелюхинская интерпретация Вселенной не была просто признанием положений, ранее считавшихся недопустимыми, а определенным независимым утверждением.
В 1826 г. Г. В. Ольберс указал в ньютоновской Вселенной на проблему, которая стала известной как парадокс Ольберса: если общее количество звезд бесконечно, то земной наблюдатель должен видеть ослепительное небо, светящееся сплошным светом. Исходя из того, что ближе лежащие звезды будут затмевать более отдаленные от Земли, Ольберс полагал, что уровень яркости должен быть не бесконечным, а скорее равным солнечному по всем направлениям. Усилия многих астрономов прошлого века были направлены на попытки разрешить этот парадокс, это представляет интерес даже сегодня, хотя допущение расширения Вселенной может объяснить указанное явление. Дело не в том, что из этого парадокса нет выхода, а в том, что любое допущение, необходимое для устранения этого парадокса, носило, до работы Хаббла по красному смещению, явно выраженный искусственный характер. Другими словами, допущение вводилось только для этой цели без дополнительных доказательств. Более того, любое из допущений имело бы радикальные космологические последствия. Сам Ольберс полагал, что он был в состоянии решить эту проблему, предположив существование пылевых облаков между звездами и Землей, которые бы препятствовали прохождению света. Сейчас мы понимаем, что гипотеза Ольберса не давала ответа, так как пыль абсорбировала бы энергию звезд до тех пор, пока сама не стала бы настолько же ослепительно яркой.
Мелюхину было ясно, что с 20-х годов возможным выходом из парадокса Ольберса являлись теории расширяющейся Вселенной (относительное движение звездного света), но он не хотел принимать расширение в качестве явления Вселенной как целого, хотя был готов принять его как явление в рамках ограниченных областей. К тому же теория расширения, даже как простое предположение, не удовлетворяла его, так как он полагал, что даваемое ею решение парадокса Ольберса будет лишь в терминах видимости; длина волны электромагнитного излучения звезд, достигающего Земли, будет смещена из светового диапазона в область радиоволн как результат внешнего расширения, но, по мнению а, парадокс все же остается. Модель Ламберта—Шарлье, впервые выдвинутая в XVIII в., представляет Вселенную, построенную в виде систем или гроздей первого порядка, второго порядка и так далее до бесконечности, причем каждая следующая система больше, чем предыдущая. Таким образом, будут иметь место галактики, супергалактики, суперсупергалактики и так до бесконечности. Мелюхин отказался от двух возможных решений парадоксов Ольберса и Зеелигера. Он полагал, что наиболее многообещающим направлением исследований является превращение кванта электромагнитного и гравитационного полей в «другие формы материи». Принимая эквивалентность материи и энергии, присущую теории относительности, полагал, что в обоих парадоксах проблема избытка электромагнитной и гравитационной энергии может быть решена поглощением этой энергии, «сопровождающим ее переход в материю». Он замечал, что современная теория поля описывает гравитационное и электромагнитное поля как специфические формы материи. При утверждении перехода гравитационной энергии в материю не возникает никакого противоречия законам сохранения, такой подход в обратном направлении ясно виден в превращении массы звезд в излучение.
4
4. Классическая космологическая модель
Успехи космологии и космогонии XVIII—XIX вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Вселенная в этом представлении о мире считается бесконечной в пространстве и во времени, т.е. вечной. Основной закон, управляющий движением и развитием небесных тел, — закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Количество звезд, звездных систем и планет во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее, погасшим, звездам приходят новые, молодые светила. В таком виде классическая космологическая модель Вселенной господствовала в науке вплоть до конца XIX в. К концу XIX в. появились серьезные сомнения в классической космологической модели, которые приняли форму космологических парадоксов — фотометрического, гравитационного и термодинамического.
Фотометрический парадокс. В XVIII в. швейцарский астроном Р. Шезо высказал сомнения по поводу пространственной бесконечности Вселенной. Если предположить, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т. е. такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Однако этого не происходит, поэтому данное парадоксальное утверждение получило в астрономии название фотометрического парадокса Шезо - Ольберса.
Гравитационный парадокс. В конце XIX в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также вытекавший из представлений о бесконечности Вселенной. В бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной (результат зависит от способа вычисления). Поскольку этого не происходит, Зеелигер сделал вывод, что количество небесных тел во Вселенной ограничено, а значит, и сама Вселенная небесконечна. Это утверждение получило название гравитационного парадокса.
Термодинамический парадокс был сформулирован также в XIX в. Он вытекает из второго начала термодинамики — принципа возрастания энтропии. Мир полон энергии, которая подчиняется закону сохранения энергии. Кажется, что из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. Если в природе материя не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, а материя пребывает в постоянном круговороте. Таким образом, погасшие звезды снова превращаются в источник света и тепла. Поэтому неожиданно прозвучал вывод из второго начала термодинамики, открытого в середине XIX в. Кельвином и Р. Ю. Э. Клаузиусом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое стремится к состоянию термодинамического равновесия, т. е. рассеивается в пространстве. Так как такой процесс рассеивания тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся, наступит «тепловая смерть Вселенной».
Таким образом, три космологических парадокса заставили ученых усомниться в классической космологической модели Вселенной, побудили их к поискам новых непротиворечивых моделей.
4
5. Современная космология и космогония
Открытие в 1929 году взрывообразного разбегания галактик, то есть быстрого расширения видимой части Вселенной, показало, что Вселенная нестационарна. Экстраполируя процесс расширения в прошлое, сделали вывод, что 15-20 миллиардов лет назад Вселенная была заключена в бесконечно малый объем пространства при бесконечно большой плотности и температуре вещества-излучения (это исходное состояние называют «сингулярностью»), а вся нынешняя Вселенная конечна – обладает ограниченным объемом и временем существования. Отсчет времени жизни такой эволюционирующей Вселенной ведут от момента, при котором, как полагают, внезапно нарушилось состояние сингулярности и произошел «Большой Взрыв». По мнению большинства исследователей, современная теория «Большого Взрыва» (ТБВ) в целом довольно успешно описывает эволюцию Вселенной, начиная примерно с 10-44 секунды после начала расширения. Единственной брешью в прекрасном сооружении ТБВ они считают проблему Начала – физического описания сингулярности. Однако и тут преобладает оптимизм: ожидают, что с созданием «Теории Всего Сущего», объединяющей все фундаментальные физические силы в единое универсальное взаимодействие, эта проблема будет автоматически решена. Тем самым построение модели мироздания в наиболее общих и существенных чертах благополучно завершится
15-20 миллиарда лет – так определяет сейчас наука возраст Вселенной. Когда человек не знал этой цифры, он не мог задаваться вопросом, которым он задается сегодня: что было до этой даты? До этой даты, утверждает современная космогония, вся масса Вселенной была сжата, была втиснута в некую точку, исходную каплю космоса. Когда Вселенная пребывала в исходном точечном состоянии, рядом, вне ее не существовало материи, не было пространства, не могло быть времени. Поэтому невозможно сказать, сколько продолжалось это – мгновение или бессчетные миллиарды лет. Невозможно сказать не только потому, что нам это неизвестно, а потому что не было ни лет, ни мгновений – времени не было. Его не существовало вне точки, в которую была сжата вся масса Вселенной, потому что вне ее не было ни материи, ни пространства. Времени не было, однако, и в самой точке, где оно должно было практически остановиться. Не обязательно, чтобы исходная точка – то «космическое яйцо», из которого родилась Вселенная, была заполнена сверхплотной материей, мыслима такая космологическая схема, в которой Вселенная не только логически, но и физически возникает из ничто, причем при строгом соблюдении всех законов сохранения. Ничто (вакуум) выступает в качестве основной субстанции, первоосновы бытия. В свете новых космогонических представлений само понимание вакуума было пересмотрено наукой. Вакуум есть особое состояние вечно движущейся, развивающейся материи. На исходных стадиях Вселенной интенсивное гравитационное поле может порождать частицы из вакуума.
Неизвестно, почему, в силу каких причин это исходное, точечное состояние было нарушено и произошло то, что обозначается сегодня словами «Большой Взрыв». Согласно сценарию исследователей, вся наблюдаемая сейчас Вселенная размером в 10 миллиардов световых лет возникла в результате расширения, которое продолжалось всего 10-30 с. Разлетаясь, расширяясь во все стороны, материя отодвигала безбытие, творя пространство и начав отсчет времени. Так видит становление Вселенной современная космогония.
Если концепция о «Большом Взрыве» верна, то он должен был бы оставить в космосе своего рода «след», «эхо». Такой «след» был обнаружен. Пространство Вселенной оказалось пронизано радиоволнами миллиметрового диапазона, разбегающимися равномерно по всем направлениям. Это «реликтовое излучение Вселенной» и есть приходящий из прошлого след сверхплотного, сверхраскаленного ее состояния, когда не было еще ни звезд, ни туманностей, а материя представляла собой дозвездную, догалактическую плазму.
4
6. Заключение
Вселенная как целое является предметом особой астрономической науки – космологии, имеющей древнюю историю. В наши дни космологические проблемы – не дело веры, а предмет научного познания. Понимание этих проблем пока еще далеко от своего завершения, и, несомненно, будущее приведет к новым великим переворотам в принятых сейчас взглядах на картину мироздания. Мы имеем дело именно с наукой, с рациональным знанием, а не с верованиями и религиозными убеждениями. Современная космология – это сложная, комплексная и быстро развивающаяся система естественно - научных и философских знаний о Вселенной в целом, основанная как на наблюдательных данных, так и на теоретических выводах, относящихся к охваченной астрономическими наблюдениями части Вселенной. Теоретико-методологический фундамент космологии составляют современные физические теории и философские принципы и представления. Глубинная связь космологии и физики базируется на том, что космологи в современной Вселенной ищут «следы» тех процессов, которые происходили в момент рождения Вселенной. А такими «следами» выступают фундаментальные свойства физического мира — три пространственных измерения и одно временное; четыре фундаментальных взаимодействия; преобладание частиц над античастицами и др. Эмпирические данные, представленные главным образом внегалактической астрономией, свидетельствуют о том, что мы живем в эволюционирующей, расширяющейся, нестационарной Вселенной. Имеет ли смысл рассматривать Вселенную в целом как единый целостный динамический объект? Современная космология в основном исходит из предположения, что на этот вопрос следует ответить положительно. Предполагается, что Вселенная в целом подчиняется тем же естественным законам, которые управляют поведением ее отдельных составных частей. При этом определяющую роль в космологических процессах играет гравитация. Результаты познания оформляются в виде моделей происхождения и развития Вселенной. Это связано с тем, что в космологии невозможно поставить воспроизводимые эксперименты и вывести из них какие-то законы, как это делается в других естественных науках. Кроме того, каждое космическое явление уникально.
2. Амбарцумян В.А. Проблема происхождения звезд//Природа. 1952. № 9. С. 9—10.
3. Арсеньев А.С. О гипотезе расширения Метагалактики и «красном смещении»//Вопросы философии. 1958. № 8. С. 190.
4. Библиотека Гумер – Наука http://www.gumer.info/
5. Виталий Лазаревич Гинзбург//Успехи физических наук. 1966. Сентябрь. Т. 90. Вып. 1. С. 195—197.
6. Гинзбург В.Л. Замечания о методологии и развитии физики и астрофизики//Вопросы философии. 1980. № 12. С. 27.
7. Зельдович Я.Б., Новиков И.Д. Строение и эволюция Вселенной. М., 1975. С. 11
8. Книгафонд - библиотека онлайн чтения. http://www.knigafund.ru/books/
9. Концепции современного естествознания: учебное пособие. Садохин А.П. Издательство: Омега-Л, 2010 г. - 240 с.
10. Космология http://cosmo.irk.ru/toc.html
11. Космология и космогония http://kosmologia.ucoz.ru/
12. Модели Вселенной. Теории, гипотезы, загадки http://nasha-vselennaia.ru/?p=
13. Научно-просветительский журнал «Скепсис» http://scepsis.ru/library/id_
14. Научно-просветительский журнал «Скепсис» http://scepsis.ru/library/id_
15. Садохин, Александр Петрович. Концепции современного естествознания: чебник для студентов вузов, обучающихся по гуманитарным специальностям и специальностям экономики и управления / А.П. Садохин. — 2-е изд., перераб. и доп. — М.: ЮНИТИ-ДАНА, 2006. - 447 с.
16. Современные космологические модели Вселенной http://www.berl.ru/article/
17. Шмидт О.Ю.Четыре лекции о теории происхождения Земли. М.,1957.С. 9.
18. ModCos – Современная космология http://www.modcos.com/
19. Эйнштейн А., Страус Э. Влияние расширения пространства на гравитационные поля, окружающие отдельные звезды//Эйнштейн А. Собр. науч. трудов. М., 1966. Т. 2. С. 623—631.
Информация о работе Космология и космогония. Космологические модели Вселенной