Энергия мирового океана

Автор: Пользователь скрыл имя, 22 Марта 2011 в 16:15, реферат

Краткое описание

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей более чем пятимиллиардного населения Земли становится сейчас все более насущной.
Основу современной мировой энергетики составляют тепло- и гидроэлектростанции. Однако их развитие сдерживается рядом факторов. Стоимость угля, нефти и газа, на которых работают тепловые станции, растет, а природные ресурсы этих видов топлива сокращаются. К тому же многие страны не располагают собственными топливными ресурсами или испытывают в них недостаток. Гидроэнергетические ресурсы в развитых странах используются практически полностью:

Оглавление

ВВЕДЕНИЕ 3
Глава 1. ЭНЕРГИЯ МИРОВОГО ОКЕАНА 5
1.1. ЭНЕРГИЯ ПРИЛИВОВ 7
1.2. ТЕПЛОВАЯ ЭНЕРГИЯ ОКЕАНА 9
1.3. ЭНЕРГИЯ ВОЛН И ТЕЧЕНИЙ 11
1.4. БИОХИМИЧЕСКАЯ ЭНЕРГИЯ 12
1.5. ВНУТРЕННЯЯ ЭНЕРГИЯ МОЛЕКУЛ ВОДЫ 14
1.6. ЭНЕРГИЯ ВЕТРА 15
Глава 2. ВЫГОДЫ ИСПОЛЬЗОВАНИЯ ЭНЕРГИИ ОКЕАНА 16
ЗАКЛЮЧЕНИЕ 18
СПИСОК ЛИТЕРАТУРЫ 19

Файлы: 1 файл

ксе - энергия мирового океана.doc

— 104.50 Кб (Скачать)

   Последние десятилетия характеризуется определенными  успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1. В августе 1979 г. вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с половиной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если но считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 кВт, максимальная –53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точнее – на зарядку аккумуляторов. Остальная вырабатываемая мощность расходовалась на собственные нужды установки. В их число входят затраты анергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.

   Три насоса потребовались из следующего расчета: один – для подачи теплой воды из океана, второй – для подкачки холодной воды с глубины около 700 м, третий – для перекачки вторичной  рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочий жидкости применяется аммиак.

   Установка мини-ОТЕС смонтирована на барже. Под  ее днищем помещен длинный трубопровод  для забора холодной воды. Трубопроводом  служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба–судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.

   Впервые в истории техники установка  мини-ОТЕС смогла отдать во внешнюю  нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-ОТЕС, позволил быстро построить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подобного типа.

   Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это – одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования анергии. Верхний конец трубопровода холодной воды расположится в океане на глубине 25–50м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудование.

   Масса всего сооружения превышает 300 тыс. т. Труба-монстр, уходящая почти на километр

   в холодную глубину океана, а в ее верхней части что-то вроде маленького островка. И никакого судна, кроме, конечно, обычных судов, необходимых для  обслуживания системы и для связи  с берегом.

   Представляется, что некоторые из предлагавшихся океанских энергетических установок могут быть реализованы, и стать рентабельными уже в настоящее время (Аугуста Голдин. Океаны энергии. – Пер. с англ. – М.: Знание, 1983.).

   .

 

   1.3. ЭНЕРГИЯ ВОЛН И ТЕЧЕНИЙ

   Ещё в начале XX века американский инженер Рансом сконструировал установку, использующую энергию волн для сжатия воздуха. Схема его установки показана на рисунке.

   Конструктором С. Солтером (S. Salter; Эдинбургский университет, Шотландия) предложен проект “Кивающая  утка”. Поплавки, покачиваемые волнами, дают энергию стоимостью всего 2,6 пенса за 1 КВт\ч, что лишь незначительно выше стоимости электроэнергии, которая вырабатывается новейшими электростанциями, сжигающими газ (в Британии это - 2,5 пенса), и заметно ниже, чем дают АЭС (около 4,5 пенса за 1 КВт\ч).

   Машина  Рансома

   Бакены  и маяки, использующие энергию волн, уже усеяли прибрежные воды Японии. В течение многих лет бакены – свистки береговой охраны США действуют благодаря волновым колебаниям.

   Недавно группа ученых океанологов обратила внимание на тот факт, что Гольфстрим несет свои воды вблизи берегов Флориды  со скоростью 5 миль в час. Идея использовать этот поток теплой воды была весьма заманчивой. Возможно ли это? Смогут ли гигантские турбины и подводные пропеллеры, напоминающие ветряные мельницы, генерировать электричество, извлекая энергию из течений и воли? "Смогут" - таково в 1974 году было заключение Комитета Мак-Артура, находящегося под эгидой Национального управления по исследованию океана и атмосферы в Майами (Флорида). Общее мнение заключалось в том, что имеют место определенные проблемы, но все они могут быть решены в случае выделения ассигнований, так как "в этом проекте нет ничего такого, что превышало бы возможности современной инженерной и технологической мысли".

 

   1.4. БИОХИМИЧЕСКАЯ ЭНЕРГИЯ

 

   В океане существует замечательная среда  для поддержания жизни, в состав которой входят питательные вещества, соли и другие минералы. В этой среде растворенный в воде кислород питает всех морских животных от самых маленьких до самых больших, от амебы до акулы. Растворенный углекислый газ точно так же поддерживает жизнь всех морских растений от одноклеточных диатомовых водорослей до достигающих высоты 200-300 футов (60-90метров) бурых водорослей. Морскому биологу нужно сделать лишь шаг вперед, чтобы перейти от восприятия океана как природной системы поддержания жизни к попытке начать на научной основе извлекать из этой системы энергию.

   При поддержке военно-морского флота  США в середине 70-х годов группа специалистов в области исследования океана, морских инженеров и водолазов  создала первую в мире океанскую  энергетическую ферму на глубине 40 футов (12 метров) под залитой солнцем гладью Тихого океана вблизи города Сан-Клемент. Ферма была небольшая. По сути своей, все это было лишь экспериментом. На ферме выращивались гигантские калифорнийские бурые водоросли.

   По  мнению директора проекта доктора Говарда А. Уилкокса, сотрудника Центра исследования морских и океанских систем в Сан-Диего (Калифорния), "до 50 % энергии этих водорослей может быть превращено в топливо - в природный газ метан. Океанские фермы будущего, выращивающие бурые водоросли на площади примерно 100 000 акров (40 000 га), смогут давать энергию, которой хватит, чтобы полностью удовлетворить потребности американского города с населением в 50 000 человек".

   В океане растворено огромное количество солей. Может ли соленость быть использована, как источник энергии? Может. Большая концентрация соли в океане навела ряд исследователей Скриппского океанографического института в Ла-Колла (Калифорния) и других центров на мысль о создании таких установок. Они считают, что для получения большого количества энергии вполне возможно сконструировать батареи, в которых происходили бы реакции между соленой и несоленой водой.

   Самолеты  и легковые автомобили, автобусы и  грузовики могут приводиться  в движение газом, который можно  извлекать из воды, а уж воды-то в морях достаточно. Этот газ - водород, и он может использоваться в качестве горючего. Водород – один из наиболее распространенных элементов во Вселенной. В океане он содержится в каждой капле воды. Помните формулу воды? Формула HOH значит, что молекула воды состоит из двух атомов водорода и одного атома кислорода. Извлеченный из воды водород можно сжигать как топливо и использовать не только для того, чтобы приводить в движение различные транспортные средства, но и для получения электроэнергии.

   Все большее число химиков и инженеров  с энтузиазмом относится к "водородной энергетике" будущего, так как  полученный водород достаточно удобно хранить: в виде сжатого газа в  танкерах или в сжиженном виде в криогенных контейнерах при  температуре ---423 градуса по Фаренгейту (-203 С). Его можно хранить и в твердом виде после соединения с железо-титановым сплавом или с магнием для образования металлических гидридов. После этого их можно легко транспортировать и использовать по мере необходимости.

   Еще в 1847 году французский писатель Жюль Верн, опередивший свое время, предвидел возникновение такой водородной экономики. В своей книге "Таинственный остров" он предсказывал, что в будущем люди научатся использовать воду в качестве источника для получения топлива. "Вода, - писал он, - представит неиссякаемые запасы тепла и света".

   Со  времен Жюля Верна были открыты методы извлечения водорода из воды. Один из наиболее перспективных из них – электролиз воды. (Через воду пропускается электрический  ток, в результате чего происходит химический распад. Освобождаются водород и кислород, а жидкость исчезает.)

   В 60-е годы специалистам из НАСА удалось  столь успешно осуществить процесс  электролиза воды и столь эффективно собирать высвобождающийся водород, что  получаемый таким образом водород использовался во время полетов по программе "Аполлон".

 

   1.5. ВНУТРЕННЯЯ ЭНЕРГИЯ  МОЛЕКУЛ ВОДЫ

 

Конечно, доступ к запасам электроэнергии ОТЕС предоставляет великолепные возможности, но (по крайней мере пока) электричество  не поднимает в небо самолеты, не будет двигать легковые и грузовые автомобили и автобусы, не поведет корабли через моря. Однако самолеты и легковые автомобили, автобусы и грузовики могут приводиться в движение газом, который можно извлекать из воды, а уж воды-то в морях достаточно. Этот газ - водород, и он может использоваться в качестве горючего. Водород- один из наиболее распространенных элементов во Вселенной. В океане он содержится в каждой капле воды. Помните формулу воды? Формула HOH значит, что молекула воды состоит из двух атомов водорода и одного атома кислорода. Извлеченный из воды водород можно сжигать как топливо и использовать не только для того, чтобы приводить в движение различные транспортные средства, но и для получения электроэнергии. Все большее число химиков и инженеров с энтузиазмом относится к "водородной энергетике" будущего, так как полученный водород достаточно удобно хранить: в виде сжатого газа в танкерах или в сжиженном виде в криогенных контейнерах при температуре 423 градуса по Фаренгейту (-203 С). Его можно хранить и в твердом виде после соединения с железо-титановым сплавом или с магнием для образования металлических гидридов. После этого их можно легко транспортировать и использовать по мере необходимости. Еще в 1847 году французский писатель Жюль Верн, опередивший свое время, предвидел возникновение такой водородной экономики. В своей книге "Таинственный остров" он предсказывал, что в будущем люди научатся использовать воду в качестве источника для получения топлива. "Вода, - писал он, - представит неиссякаемые запасы тепла и света". Со времен Жюля Верна были открыты методы извлечения водорода из воды. Один из наиболее перспективных из них - электролиз воды. (Через воду пропускается электрический ток, в результате чего происходит химический распад. Освобождаются водород и кислород, а жидкость исчезает.) В 60-е годы специалистам из НАСА удалось столь успешно осуществить процесс электролиза воды и столь эффективно собирать высвобождающийся водород, что получаемый таким образом водород использовался во время полетов по программе "Аполлон".

 

   1.6. ЭНЕРГИЯ ВЕТРА

 

Использование   энергии ветра имеет  многовековую историю. Идея преобразования энергии  ветра в электрическую возникла в конце Х1Хв.

В СССР первая ветровая электростанция (ВЭС) мощностью 100 кВт была построена в 1931 г. у города Ялта в Крыму. Тогда это была крупнейшая ВЭС в мире. Среднегодовая выработка станции составляла 270 МВт.час. В 1942 г. станция была разрушена.

В период энергетического кризиса 70-х гг. интерес к использованию энергии  возрос. Началась разработка ВЭС как для прибрежной зоны, так и для открытого океана. Океанские ВЭС способны вырабатывать энергии больше, чем расположенные на суше, поскольку ветры над океаном более сильные и постоянные.

Строительство ВЭС малой мощности (от сотен ватт до десятков киловатт) для энергоснабжения приморских поселков,  маяков, опреснителей морской воды считается выгодным при среднегодовой скорости ветра 3,5-4 м/с. Возведение ВЭС большой мощности (от сотен киловатт до сотен мегаватт) для передачи электроэнергии в энергосистему страны оправдано там, где среднегодовая скорость ветра превышает 5,5-6 м/с. (Мощность, которую можно получить с 1 кв.м поперечного сечения воздушного потока, пропорциональна скорости ветра в третьей степени). Так, в Дании – одной из ведущих стран мира в области ветроэнергетики действует уже около 2500 ветровых установок общей мощностью 200 МВт.

На тихоокеанском  побережье США в Калифорнии, где  скорость ветра 13 м/с и больше наблюдается  в продолжение более 5 тыс, ч в  году, работает уже несколько тысяч ветровых установок большой мощности. ВЭС различной мощности действуют в Норвегии, Нидерландах, Швеции, Италии, Китае, России и других странах.

В связи  с непостоянством ветра по скорости и направлению большое внимание уделяется созданию ветроустановок, работающих с другими источниками энергии. Энергию крупных океанских ВЭС предполагается использовать при производстве водорода из  океанской воды или при добыче полезных ископаемых со дна океана.

Еще в  конце Х1Х в. ветряной электродвигатель использовался Ф.Нансеном на судне "Фрам" для обеспечения участников полярной экспедиции светом и теплом во время дрейфа во льдах.

В Дании  на полуострове Ютландия в бухте  Эбельтофт с 1985 г. действуют шестнадцать  ВЭС мощностью 55 кВт каждая и одна ВЭС мощностью 100 кВт. Ежегодно они вырабатывают 2800-3000 МВт.ч.

Информация о работе Энергия мирового океана