Автор: Пользователь скрыл имя, 13 Декабря 2014 в 18:22, реферат
История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано долгое время с развитием физики. Именно физика была и остается наиболее развитой и концепциям и аргументам, во многом определившим эту картину. Степень разработанности физики была настолько велика, что она могла создать собственную физическую картину мира, в отличие от других естественных наук, которые лишь в XX в. смогли поставить перед собой эту задачу (создание химической и биологической картин мира). Поэтому, начиная разговор о конкретных достижениях естествознания, мы начнем его с физики, с картины мира, созданной этой наукой.
Введение
Физическая картина мира
Механистическая картина мира
Электромагнитная картина мира
Становление современной физической картины мира
Квантово-полевая картина мира
Министерство образования и науки Российской Федерации
ФГБОУ ВПО «МАТИ - Российский государственный технологический университет имени К.Э. Циолковского»
Кафедра химии, физики и химии композиционных материалов.
Реферат по дисциплине:
“Концепции современного естествознания”
“Физическая картина мира”
Выполнила студентка
группы 4БИТ-1ДБ-007
Евсеева Мария Васильевна
Проверила:
В.С. Клементьева
Москва, 2014.
Содержание:
Введение
Физическая картина мира
Механистическая картина мира
Электромагнитная картина мира
Становление современной физической картины мира
Квантово-полевая картина мира
Введение.
История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано долгое время с развитием физики. Именно физика была и остается наиболее развитой и концепциям и аргументам, во многом определившим эту картину. Степень разработанности физики была настолько велика, что она могла создать собственную физическую картину мира, в отличие от других естественных наук, которые лишь в XX в. смогли поставить перед собой эту задачу (создание химической и биологической картин мира). Поэтому, начиная разговор о конкретных достижениях естествознания, мы начнем его с физики, с картины мира, созданной этой наукой.
Понятие "физическая картина мира" употребляется давно, но лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как особый самостоятельный вид знания - самое общее теоретическое знание в физике (система понятий, принципов и гипотез), служащее исходной основой для построения теорий. Физическая картина мира, с одной стороны, обобщает все ранее полученные знания о природе, а с другой - вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы, которых до этого не было и которые коренным образом меняют основы физического теоретического знания: старые физические понятия и принципы ломаются, новые возникают, картина мира меняется.
Ключевым в физической картине мира служит понятие "материя", на которое выходят важнейшие проблемы физической науки. Поэтому смена физической картины мира связана со сменой представлений о материи. В истории физики это происходило два раза. Сначала был совершен переход от атомистических, корпускулярных представлений о материи к полевым - континуальным. Затем, в XX в., континуальные представления были заменены современными квантовыми. Поэтому можно говорить о трех последовательно сменявших друг друга физических картинах мира.
Одной из первых возникла механистическая картина мира, поскольку изучение природы началось с анализа простейшей формы движения материи - механического перемещения тел.
Физическая картина мира
Успехи Ньютоновской системы (поразительная точность и кажущаяся ясность) привели к тому, что многие критические соображения в ее адрес обходились молчанием. А Ньютоновская концепция пространства и времени, на основе которой строилась физическая картина мира, оказалась господствующей вплоть до конца XIX в.
Основные положения этой картины мира, связанные с пространством и временем, заключаются в следующем.
-
Пространство считалось
- Время понималось абсолютным, однородным, равномерно текущим. Оно идет сразу и везде во всей Вселенной "единообразно и синхронно" и выступает как независимых материальных объектов процесс длительности, Фактически классическая механика сводила время к длительности, фиксируя определяющее свойство времени "показывать последовательность события”. Значение указаний времени в классической механике считалось абсолютным, не зависящим от состояния движения тела отсчета.
-
Абсолютное время и
-
Принятие абсолютного времени
и постулирование абсолютной
и универсальной
Три физических картины Мира: механистическая, электромагнитная и квантово- полевая.
Механистическая картина мира
Формирование механистической картины мира (МКМ) происходило в течение нескольких столетий до середины девятнадцатого века под сильным влиянием взглядов выдающихся мыслителей древности: Демокрита, Эпикура, Аристотеля, Лукреция и др. Она явилась необходимым и очень важным шагом на пути познания природы.
Механистическая картина мира Формируется на основе механики Леонардо да Винчи (1452-1519 гг.), гелиоцентрической системы Н. Коперника (1473-1543 гг.), экспериментального естествознания Г. Галилея (1564-1642 гг.), законов небесной механики И. Кеплера(1571-1630 гг.),механики И. Ньютона (1643-1727 гг.)
Гелиоцентрическая система
В рамках механистической картины мира сложилась дискретная (корпускулярная) модель реальности. Материя - вещественная субстанция, состоящая из атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.
Концепция абсолютного
Все механические процессы подчиняются принципу детерминизма. Случайность исключается из картины мира характерные особенности. Движение - простое механическое перемещение. Законы движения - фундаментальные законы мироздания. Тела двигаются равномерно и прямолинейно, а отклонения от этого движения есть действие на них внешней силы (инерции). Мерой инерции является масса. Универсальным свойством тел является сила тяготения, которая является дальнодействующей.
Принцип дальнодействия - взаимодействие
между телами происходит
На основе механистической
Электромагнитная картина мира
В XIX веке естественные науки накопили огромный эмпирический материал, нуждающийся в переосмыслении и обобщении. Многие полученные в результате исследований научные факты не совсем вписывались в устоявшиеся механические представления об окружающем мире. Во второй половине XIX века на основе исследований в области электромагнетизма сформировалась новая физическая картина мира - электромагнитная картина мира (ЭМКМ).
В её формировании сыграли решающую роль исследования, проведённые выдающимися учёными М.Фарадеем и Дж.Максвеллом, Г.Герцем.
М.Фарадей, отказываясь от концепции дальнодействия (переносчик взаимодействия) вводит понятие физического поля, которое играет значительную роль в дальнейшем развитии науки и техники (радиосвязь, телевидение и т.д.). Дж.Максвелл развивает теория электромагнитного поля, а Г.Герц экспериментально открывает электромагнитные волны.
В ЭМКМ весь мир заполнен электромагнитным эфиром, который может находиться в различных состояниях. Физические поля трактовались как состояния эфира. Эфир является средой для распространения электромагнитных волн и, в частности, света.
Материя считается непрерывной. Все законы природы сводятся к уравнениям Дж.Максвелла, описывающим непрерывную субстанцию: природа не делает скачков. Вещество состоит из электрически заряженных частиц, взаимодействующих между собой посредством полей.
На основе электромагнитных взаимодействий объясняются все известные механические, электрические, магнитные, химические, тепловые, оптические явления.
Делаются попытки свести механическое описание явлений к описанию на основе теории электромагнитного поля. Трактовка явлений на основе электромагнетизма кажется изящной и законченной. Всё многообразие явлений природы сведено к нескольким математически строгим, хотя и очень сложным, соотношениям.
Понятие эфира (как переносчика света и электромагнитных волн) медленно эволюционирует - вплоть до полного отказа в конечном итоге от самой концепции эфира.
Меняются представления учёных о пространстве и времени. Появляются первые работы А.Эйнштейна по теории относительности. В научных работах зарождаются новые взгляды на природу тяготения, отличные от тех, что развивались в механической картине мира.
Вселенная как бы обретает совершенно новые черты. Ученые обнаруживают «разбегание» галактик.
ЭМКМ расширяется, уточняется и углубляется. Учёные строят всё новые и новые модели атома, стремясь узнать, какая из них все-таки ближе всего к истине.
Наиболее красивой и точной стала планетарная модель атома, созданная Э.Резерфордом. Но именно она стала отправной точкой при появлении совершенно новых взглядов на строение окружающего нас мира.
Уже в конце XIX, начале XX века экспериментальные данные, полученные при изучении микро- и мегамира, резко расходились с предсказаниями существующих естественно-научных теорий, требовали разработки новых, более точных и адекватных сущности многих загадочных явлений.
Не смотря на это, электромагнитная картина мира подарила нам очень многое, без чего мы не можем представить современную жизнь: способы получения и использования электрической энергии, к примеру, электрическое освещение (без которого уже немыслимы наши жилища) и отопление, современные электромагнитные средства связи (радио, телефон, телевидение). Без радиосвязи, например, уже невозможно существование современных государств, функционирование транспорта и производства, немыслимо даже повседневное общение людей.
Становление современной физической картины мира
В конце XIX в. и начале ХХ в. в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о картине мира. Прежде всего, это открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии. Если раньше последними неделимыми частицами материи, из которых состоит природа, считались атомы, то в конце XIX в. были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишённых заряда частиц).
Согласно первой модели атома, построенной английским учёным Эрнестом Резерфордом (1871-1937), атом уподоблялся миниатюрной солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой: вращающиеся электроны, теряя свою энергию, в конце концов, должны были упасть на ядро. Но опыт показывает, что атомы являются весьма устойчивыми образованиями и для их разрушения требуются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована выдающимся физиком Нильсом Бором (1885-1962), который предположил, что при вращении по так называемым стационарным орбитам электроны не излучают энергию. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую.
В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что все элементарные частицы вещества, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путём было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определённых условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля -свойства корпускул. Это явление получило название дуализма волны и частицы - представление, которое никак не укладывалось в рамки обычного здравого смысла. До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а энергия поля - волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. Но под давлением неопровержимых экспериментальных результатов учёные вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн.
Так сложились новые, квантово-полевые представления о материи, которые определяются как корпускулярно-волновой дуализм - наличие у каждого элемента материи свойств волны и частицы. Ушли в прошлое и представления о неизменности материи. Одной из основных особенностей элементарных частиц является их универсальная взаимозависимость и взаимопревращаемость. В современной физике основным материальным объектом является квантовое поле, переход его из одного состояния в другое меняет число частиц.
Окончательно утверждаются представления об относительности пространства и времени, зависимость их от материи. Пространство и время перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме.
Эти новые мировоззренческие подходы к исследованию естественнонаучной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы, научных революций в естествознании. А ведь именно с революционными преобразованиями в естествознании связано изменение представлений о картине природы.