Автор: Пользователь скрыл имя, 03 Июня 2015 в 12:56, лекция
Программные инструменты в жизненном цикле программных средств.
Инструментальные среды и инструментальные системы поддержки разработки программных средств, их классификация.
Компьютерная технология (CASE-технология) разработки программных средств и ее рабочие места.
Общая архитектура инструментальных систем технологии программирования
В настоящее время компьютерную технологию разработки ПС можно характеризовать [ 1] использованием
Говорят также, что компьютерная технология разработки ПС является "безбумажной", т.е. рассчитанной на компьютерное представление программных документов. Однако, уверенно отличить ручную технологию разработки ПС от компьютерной по этим признакам довольно трудно. Значит, самое существенное в компьютерной технологии не выделено.
На наш взгляд, главное отличие ручной технологии разработки ПС от компьютерной заключается в следующем. Ручная технология ориентирована на разработку документов, одинаково понимаемых разными разработчиками ПС, тогда как компьютерная технология ориентирована на обеспечение семантического понимания (интерпретации) документов программной поддержкой компьютерной технологии.
Семантическое понимание документов дает программной поддержке возможность автоматически генерировать программы. В связи с этим существенной частью компьютерной технологии становится использование формальных языков уже на ранних этапах разработки ПС: как для спецификации программ, так и для спецификации других документов. В частности, широко используются формальные графические языки спецификаций. Именно это позволяет рационально изменить и саму совокупность технологических процессов разработки и сопровождения ПС.
Из проведенного обсуждения можно определить компьютерную технологию разработки ПС как технологию программирования, в которой используются программные инструменты для разработки формализованных спецификаций программ и других документов (включая и графические спецификации) с последующей автоматической генерацией программ и документов (или хотя бы значительной их части) по этим спецификациям.
Теперь становятся понятными и основные изменения в жизненном цикле ПС для компьютерной технологии. Если при использовании ручной технологии основные усилия по разработке ПС делались на этапах собственно программирования (кодирования) и отладки (тестирования), то при использовании компьютерной технологии - на ранних этапах разработки ПС (определения требований и функциональной спецификации, разработки архитектуры). При этом существенно изменился характер документации.
Вместо целой цепочки неформальных документов, ориентированной на передачу информации от заказчика (пользователя) к различным категориям разработчикам, формируются прототип ПС, поддерживающий выбранный пользовательский интерфейс, и формальные функциональные спецификации (иногда и формальные спецификации архитектуры ПС), достаточные для автоматического синтеза (генерации) программ ПС (или хотя бы значительной их части). При этом появилась возможность автоматической генерации части документации, необходимой разработчикам и пользователям. Вместо ручного программирования (кодирования) - автоматическая генерация программ, что делает не нужной автономную отладку и тестирование программ: вместо нее добавляется достаточно глубокий автоматический семантический контроль документации. Появляется возможность автоматической генерации тестов по формальным спецификациям для комплексной (системной) отладки ПС. Существенно изменяется и характер сопровождения ПС: все изменения разработчиком-сопроводителем вносятся только в спецификации (включая и прототип), остальные изменения в ПС осуществляются автоматически.
С учетом сказанного жизненный цикл ПС для компьютерной технологии можно представить [ 4] следующей схемой (рис. 3).
Рис. 3. Жизненный цикл программного средства для компьютерной технологии.
Прототипирование ПС является необязательным этапом жизненного цикла ПС при компьютерной технологии, что на рис. 3 показано пунктирной стрелкой. Однако использование этого этапа во многих случаях и соответствующая компьютерная поддержка этого этапа является характерной для компьютерной технологии. В некоторых случаях прототипирование делается после (или в процессе) разработки спецификаций ПС, например, в случае прототипирования пользовательского интерфейса. Это показано на рис. 3 пунктирной возвратной стрелки. Хотя возврат к предыдущим этапам мы допускаем на любом этапе, но здесь это показано явно, так как прототипирование является особым подходом к разработке ПС.
Прототипирование пользовательского интерфейса позволяет заменить косвенное описание взаимодействия между пользователем и ПС при ручной технологии (при разработке внешнего описания ПС) прямым выбором пользователем способа и стиля этого взаимодействия с фиксацией всех необходимых деталей. По существу, на этом этапе производится точное описание пользовательского интерфейса, понятное программной поддержке компьютерной технологии, причем с ответственным участием пользователя. Все это базируется на наличие в программной поддержке компьютерной технологии настраиваемой оболочки с обширной библиотекой заготовок различных фрагментов и деталей экрана. Такое прототипирование, по-видимому, является лучшим способом преодоления барьера между пользователем и разработчиком.
Разработка спецификаций ПС распадается на несколько разных процессов. Если исключить начальный этап разработки спецификаций (определение требований), то в этих процессах используются методы, приводящие к созданию формализованных документов, т. е. используются формализованные языки спецификаций. При этом широко используются графические методы спецификаций, приводящие к созданию различных схем и диаграмм, которые определяют структуру информационной среды и структуру управления ПС.
К таким структурам привязываются фрагменты описания данных и программ, представленные на алгебраических языках спецификаций (например, использующие операционную или аксиоматическую семантику), или логических языках спецификаций (базирующихся на логическом подходе к спецификации программ). Такие спецификации позволяют в значительной степени или полностью автоматически генерировать программы. Существенной частью разработки спецификаций является создание словаря именованных сущностей, используемых в спецификациях.
Автоматизированный контроль спецификаций ПС использует то обстоятельство, что значительная часть спецификаций представляется на формальных языках. Это позволяет автоматически осуществлять различные виды контроля: синтаксический и частичный семантический контроль спецификаций, контроль полноты и состоятельности схем и диаграмм (в частности, все их элементы должны быть идентифицированы и отражены в словаре именованных сущностей), сквозной контроль сбалансированности уровней спецификаций и другие виды контроля в зависимости от возможностей языков спецификаций.
Генерация программ ПС. На этом этапе автоматически генерирует скелеты кодов программ ПС или полностью коды этих программ по формальным спецификациям ПС.
Автоматизированное документирование ПС. Предполагает возможность генерации различных форм документов с частичным заполнением их по информации, хранящейся в репозитории. При этом количество видов документов сокращается по сравнению с традиционной технологией.
Комплексное тестирование и отладка ПС. На этом этапе тестируются все спецификации ПС и исправляются обнаруженные при этом ошибки. Тесты могут создаваться как вручную, так и автоматически (если это позволяют используемые языки спецификаций) и пропускаются через сгенерированные программы ПС.
Аттестация ПС имеет прежнее содержание.
Сопровождение ПС существенно упрощается, так как основные изменения делаются только в спецификациях.
Рабочее место компьютерной технологии разработки ПС представляет собой инструментальную среду, поддерживающую все этапы жизненного цикла этой технологии. В этой среде существенно используется репозиторий. В репозитории хранится вся информация, создаваемая в процессе разработки ПС (в частности, словарь именованных сущностей и все спецификации). По существу, рабочее место компьютерной технологии является интегрированным хотя бы по пользовательскому интерфейсу и по данным. Основными инструментами такого рабочего места являются:
Инструментальная система технологии программирования - это интегрированная совокупность программных и аппаратных инструментов, поддерживающая все процессы разработки и сопровождения больших ПС в течение всего его жизненного цикла в рамках определенной технологии.
Тем самым, инструментальная
система в состоянии
С учетом обсужденных свойств инструментальных систем технологии программирования можно выделить три их основные компоненты:
Инструментарий - набор инструментов, определяющий возможности, предоставляемые системой коллективу разработчиков. Обычно этот набор является открытым и структурированным. Помимо минимального набора (встроенные инструменты), он содержит средства своего расширения (импортированными инструментами). Кроме того, в силу интегрированности по действиям он состоит из некоторой общей части всех инструментов (ядра) и структурных (иногда иерархически связанных) классов инструментов.
Интерфейсы разделяются на пользовательский и системные. Пользовательский интерфейс обеспечивает доступ разработчикам к инструментарию. Он реализуется оболочкой системы. Системные интерфейсы обеспечивают взаимодействие между инструментами и их общими частями. Системные интерфейсы выделяются как архитектурные компоненты в связи с открытостью системы - их обязаны использовать новые (импортируемые) инструменты, включаемые в систему.
Самая общая архитектура инструментальных систем технологии программирования представлена на рис. 4.
Рис. 4. Общая архитектура инструментальных систем технологии программирования.
Различают два класса инструментальных систем технологии программирования: инструментальные системы поддержки проекта и языково-зависимые инструментальные системы.
Инструментальная система поддержки проекта - это открытая система, способная поддерживать разработку ПС на разных языках программирования после соответствующего ее расширения программными инструментами, ориентированными на выбранный язык. Набор инструментов такой системы поддерживает разработкой ПС, а также содержит независимые от языка программирования инструменты, поддерживающие разработку ПС (текстовые и графические редакторы, генераторы отчетов и т.п.). Кроме того, он содержит инструменты расширения системы. Ядро такой системы обеспечивает, в частности, доступ к репозиторию.
Языково-зависимая инструментальная система - это система поддержки разработки ПС на каком-либо одном языке программирования, существенно использующая в организации своей работы специфику этого языка. Эта специфика может сказываться и на возможностях ядра (в том числе и на структуре репозитория), и на требованиях к оболочке и инструментам. Примером такой системы является среда поддержки программирования на Аде (APSE [ 4]).
Литература
1. Ian Sommerville. Software Engineering. - Addison-Wesley Publishing Company, 1992. P. 349-369.
2. Е.А. Жоголев. Введение в технологию программирования (конспект лекций). - М.: "ДИАЛОГ-МГУ", 1994.
3. М.М. Горбунов-Посадов. Конфигурации программ. Рецепты безболезненных изменений. – М.: «Малип», 1994.
4. CASE: Компьютерное проектирование программного обеспечения. - Издательство Московского университета, 1994.
5. Requirements for Ada Programming Support Environments. - USA: DoD, Stoneman, 1980.
Информация о работе Технология разработки программных средств