Система счисления

Автор: Пользователь скрыл имя, 15 Марта 2012 в 16:42, реферат

Краткое описание

В повседневной жизни мы, как правило, пользуемся десятичной системой счисления. Но это лишь одна из многих систем, которая получила свое распространение, вероятно, по той причине, что у человека на руках 10 пальцев. Однако эта система не всегда удобна. Так, в вычислительной технике применяется двоичная система счисления.

Оглавление

ВВЕДЕНИЕ
1. Сущность различных систем счисления
2. Перевод чисел из одной системы счисления в другую
ЗАКЛЮЧЕНИЕ

Файлы: 1 файл

Система счисления.doc

— 93.00 Кб (Скачать)

 

Основание шестнадцатеричной системы счисления – цифры 0,1,2,3,4,5,6,7,8,9 и буквы A,B,C,D,E,F.

Соединим десятичные и шестна-дцатеричные числа в единую таблицу (табл. 3).

 

Таблица 3. Соответствие десятичных и шестнадцатеричных чисел

 

Десятичное число

Шестнадцатеричное число

Десятичное число

Шестнадцатеричное число

 

 

0-9

0-9

29

1D

 

 

10

А

30

 

 

11

12

В

С

31

32-41

1F 

20-29

 

 

13

D

42-47

2A-2F

 

 

14

Е

48-255

30-FF

 

 

15

F

256

100

 

 

16

10

512

200

 

 

17-25

11-19

1024

400

 

 

26

1280

500

 

 

27

4096

1000

 

 

28

1C 

 

 

 


 

Шестнадцатеричная система используется, чтобы более компактно записывать двоичную информацию. В самом деле, «шестнадцатеричная тысяча», состоящая из четырех разрядов, в двоичном виде занимает тринадцать разрядов (100016 = 10000000000002).

 


2. Перевод чисел из одной системы счисления в другую

Рассмотрим способы перевода чисел из одной системы счисления в другую.

а) Перевод двоичного числа в десятичное.

Необходимо сложить двойки в степенях, соответствующих позициям, где в двоичном стоят единицы. Например:

Возьмем число 20. В двоичной системе оно имеет следующий вид: 10100.

Итак (считаем слева направо, считая от 4 до 0; число в нулевой степени всегда равно единице)

10100 = 1*24 + 0*23 + 1*22 + 0*21 + 0*20 = 20

16+0+4+0+0 = 20.

б) Перевод десятичного числа в двоичное.

Необходимо делить его на два, записывая остаток справа налево:

20/2 = 10, остаток 0

10/2=5, остаток 0

5/2=2, остаток 1

2/2=1, остаток 0

1/2=0, остаток 1

В результате получаем: 10100 = 20

в) Перевод шестнадцатеричного числа в десятичное.

В шестнадцатеричной системе номер позиции цифры в числе соответствует степени, в которую надо возвести число 16:

8A = 8*16 + 10 (0A) = 138

Напоследок приведем алгоритм перевода в двоичную и из двоичной системы, предлагаемый Л. Радюком.

Пусть А(цд) – целое десятичное число. Запишем его в виде суммы степеней основания 2 с двоичными коэффициентами. В его записи в развёрнутой форме будут отсутствовать отрицательные степени основания (числа 2):

A(цд) = a(n–1) • 2^(n–1) + a(n–2) • 2^(n–2) + … + a(1) • 2^1 + a(0) • 2^0.

На первом шаге разделим число А(цд) на основание двоичной системы, то есть на 2. Частное от деления будет равно:

a(n–1) • 2^(n–2) + a(n–2) • 2^(n–3) + … + a(1), а остаток равен a(0).

На втором шаге целое частное опять разделим на 2, остаток от деления будет теперь равен a(1).

Если продолжать этот процесс деления, то после n-го шага получим последовательность остатков:

a(0), a(1),…, a(n–1).

Легко заметить, что их последовательность совпадает с обратной последовательностью цифр целого двоичного числа, записанного в свёрнутой форме:

A(2) = a(n–1)…a(1)a(0).

Таким образом, достаточно записать остатки в обратной последовательности, чтобы получить искомое двоичное число.

Тогда сам алгоритм будет следующим:

1. Последовательно выполнять деление исходного целого десятичного числа и получаемых целых частных на основание системы (на 2) до тех пор, пока не получится частное, меньшее делителя, то есть меньше 2.

2. Записать полученные остатки в обратной последовательности, а слева добавить последнее частное.

Для перевода чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную необходимо цифры числа преобразовать в группы двоичных цифр. Для перевода из восьмеричной системы в двоичную каждую цифру числа надо преобразовать в группу из трёх двоичных цифр  триаду, а при преобразовании шестнадцатеричного числа  в группу из четырёх цифр  тетраду.


ЗАКЛЮЧЕНИЕ

 

Подводя итоги работы, можно сделать следующие выводы.

Позиционная система счисления состоит в использовании ограниченного числа цифр, зато позиция каждой цифры в числе обеспечивает значимость (вес) этой цифры. Позиция цифры в числе на математическом языке называется разрядом.

Основание позиционной системы счисления  это количество различных знаков или символов (цифр), используемых для отображения чисел в данной системе.

Для того чтобы двоичные числа, отличающиеся довольно значительной длиной, было легче воспринимать и отображать, их сжимают в восьмеричную и шестнадцатеричную системы счисления.

В компьютерных технологиях все виды информации кодируются только цифрами или, точнее, числами, которые представляются в двоичной системе счисления  способе представления любых чисел с помощью двух знаков (цифр) по позиционному принципу.

 



Информация о работе Система счисления