Процессор компьютера. Основные характеристики (разрядность, адресное пространство и др.)

Автор: Пользователь скрыл имя, 10 Мая 2015 в 13:55, реферат

Краткое описание

Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.
Главными характеристиками ЦПУ являются: частота, производительность, энергопотребление, нормы литографического процесса, используемого при производстве (для микропроцессоров) и архитектура.

Оглавление

Введение. Общие понятия. 2
Основные характеристики. 3
1. Тактовая частота 3
Что это за параметр — тактовая частота процессора? 3
Тактовая частота многоядерных процессоров. 4
2. Разрядность. 4
3. Адресное пространство. 6
Перспективы 7
Литература: 8

Файлы: 1 файл

реферат.docx

— 1.67 Мб (Скачать)

Основные

Введение. Общие понятия.

 

 

Реферат




 


 


 

 

Оглавление

 

 

 Введение. Общие понятия.

Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Главными характеристиками ЦПУ являются: частота, производительность, энергопотребление, нормы литографического процесса, используемого при производстве (для микропроцессоров) и архитектура.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где, помимо вычислительного устройства, на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода-вывода, таймеры и др.). Современные вычислительные  

возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Основные характеристики.

1. Тактовая частота

Из всех технических характеристик процессора наиболее известной среди пользователей является тактовая частота. Но, мало кто из неспециалистов до конца понимает, что это такое. Более подробная информация об этом поможет лучше понимать работу вычислительных систем. Особенно при использовании многоядерных процессоров, имеющих определенные особенности работы, которые далеко не всем известны, но которые следует учитывать при работе компьютера.

 

В течение длительного времени основные усилия разработчиков были направлены именно на повышение тактовой частоты. Лишь в последнее время наметилась тенденция развития и совершенствования компьютерной архитектуры, увеличения объема кэш памяти, количества ядер процессора. Однако и тактовая частота процессора не остается без внимания.

 

Что это за параметр — тактовая частота процессора?

Попробуем разобраться, что такое «тактовая частота процессора». Эта величина характеризует количество вычислений, которые процессор может выполнить за одну секунду. Следовательно, процессор с более высокой тактовой частотой обладает и более высокой производительностью, т.е. способен выполнить за определенный промежуток времени большее количество операций.

Большинство современных процессоров имеют тактовую частоту от 1 до 4 ГГц. Эта величина определяется, как произведение базовой частоты и некоторого коэффициента. В частности процессор Intel Core i7 920 имеет собственную тактовую частоту 2660 Гц, которая получается за счет базовой частоты шины 133 МГц и коэффициента 20. Некоторые производители выпускают процессоры, способные разгоняться до большей производительности. Например, Black Edition у AMD и линейка К-серии компании Intel. Стоит отметить, что, не смотря на важность этой характеристики, она не является решающей при выборе компьютера.  

Тактовая частота лишь частично влияет на производительность процессора.

 

Тактовая частота многоядерных процессоров.

Одноядерные процессоры практически канули в Лету, и достаточно редко используются в современных вычислительных устройствах. Это вызвано развитием IT-индустрии, прогресс которой не перестает удивлять. 

 

Как же рассчитывается тактовая частота многоядерных процессоров? 

Даже у специалистов иногда можно встретить ошибочное мнение о том, как вычислить тактовую частоту процессора с двумя и более ядрами. Распространенным заблуждением является, что тактовую частоту надо умножить на количество ядер. Например, 4-ядерный процессор при тактовой частоте 3 ГГц будет иметь интегрированную частоту 12 ГГц, т.е. 4х3=12. Но это не соответствует истине.

 

Объясним это на простом примере. Возьмем пешехода, идущего со скоростью 4 км/час – это одноядерный процессор с частотой 4 ГГц. А 4-ядерный процессор с тактовой 4 ГГц – это уже 4 пешехода, идущие с той же скоростью 4 км/час. Ведь в этом случае скорость пешеходов не суммируется, и мы не можем говорить, что они перемещаются со скоростью 16 км/час. Мы просто говорим о том, что четыре пешехода идут вместе со скоростью 4 км/час каждый. Эту же аналогию можно отнести и к многоядерному процессору. Таким образом, можно сказать, что 4-ядерный процессор с тактовой частотой 4 ГГц просто обладает четырьмя ядрами, каждое из которых имеет одну и ту же частоту – 4 ГГц. Из этого следует простой и логичный вывод количество ядер процессор влияет только на его производительность, а не увеличивает суммарную тактовую частоту вычислительного устройства.

 
 
2. Разрядность.

Один из параметров, который имеет важное значение для производительности процессора – это его разрядность. Разрядность процессора говорит о том, какое количество бит информации он примет и обработает через свои регистры за один такт. 

 
 
В 2002 году произошёл скачок в эволюционном развитии разрядности процессоров. Компания «AMD» выпустила на рынок процессоры с расширенной 64-битной «IA32 — AMD64» архитектурой вместо стандартной 32-битной.

Компания «Intel не заставила себя долго ждать», и на рынок была выпущена их новая разработка 64-битного процессора с обозначением – «EM64T».

Конечно, цифры поменялись, но суть сохранилась, то есть основные внутренние регистры процессора просто увеличили свою разрядность в 2 раза – было 32 бита, стало 64.

На сегодняшний день все выпускаемые процессоры имеют 64-битную разрядность, но на них также можно запускать 32-разрядные программные продукты. Такая возможность сохранилась по той причине, что 64-разр. сделана как расширение и поэтому допускает запуск 32-разр. приложений.

32 и 64-разрядные процессоры имеют разную маркировку. У 32-р. маркировка «х86», где «86» означает поколение процессора. 64-разр. маркируются символами «х64, EM64T, AMD64».

Чтобы вы имели возможность использовать 64-разр. процессор во всю силу вам необходимо установить на компьютер 64-битную ОС, которая обозначается теми же символами «х64».

Что в итоге дает разрядность для обычного пользователя ПК 32 или 64. Если не лезть в дебри, то на компьютере, построенном на 32-р. x86 процессоре и на этом компьютере установлена 32-битная операционная система то объем доступной оперативной памяти будет ограничен 4 Гб. Ну а в 64-битной операционной системе установленной на 64-р. процессор – объем поддерживаемой оперативной памяти специально логически ограничен до 16 Тб.

В целом для обычного рядового пользователя, использование 64-битной операционной системы на ПК дает возможность использовать более 4 Гб оперативной памяти.

Вы можете узнать всю информацию о своём процессоре с помощью программных утилит. К ним относится, например «CPU-Z», которая  

анализирует архитектуру компьютера и выдаёт все данные о его основных компонентах.

3. Адресное пространство.

Адресное пространство процессора – общее количество адресов, выделяемых для обозначения внутренних регистров и устройств хранения данных, а также регистров внешних устройств, к которым относятся элементы памяти и ввода/вывода. Этот показатель рассчитывается на основании разрядности адресной шины, физически поддерживаемой микропроцессором. Например, модель КР580ВМ80А является обладателем пропускной способности в шестнадцать разрядов, что соответствует 216 ячейкам памяти.

Чтобы допустить одновременное размещение в памяти нескольких приложений без создания взаимных помех, нужно решить две проблемы, относящиеся к защите и перемещению. Примитивное решение первой из этих проблем мы уже рассматривали на примере IBM 360: участки памяти помечались защитным ключом, и ключ выполняемого процесса сличался с ключом каждого выбранного слова памяти. Но этот подход не решал второй проблемы, хотя она могла быть решена путем перемещения программ в процессе их загрузки, но это было слишком медленным и сложным решением.

Более подходящее решение — придумать для памяти новую абстракцию: адресное пространство. Так же как понятие процесса создает своеобразный абстрактный центральный процессор для запуска программ, понятие адресного пространства создает своеобразную абстрактную память, в которой существуют программы. Адресное пространство — это набор адресов, который может быть использован процессом для обращения к памяти. У каждого процесса имеется свое собственное адресное пространство, независимое от того адресного пространства, которое принадлежит другим процессам (за исключением тех особых обстоятельств, при которых процессам требуется совместное использование их адресных пространств). 

 

Понятие адресного пространства имеет весьма универсальный характер и появляется во множестве контекстов. Возьмем телефонные номера. В США и многих других странах местный телефонный номер состоит обычно из семизначного номера. Поэтому адресное пространство телефонных номеров простирается от 0000000 до 9999999, хотя некоторые номера, к примеру, те, что начинаются с 000, не используются. С ростом количества сотовых телефонов, модемов и факсов это пространство стало слишком тесным, а в этом случае необходимо использовать больше цифр. Адресное пространство портов ввода-вывода процессора Pentium простирается от 0 до 16 383. Протокол IPv4 обращается к 32-разрядным номерам, поэтому его адресное пространство простирается от 0 до 232 - 1 (опять-таки с некоторым количеством зарезервированных номеров).

Адресное пространство не обязательно должно быть числовым. Набор интернет-доменов .com также является адресным пространством. Это адресное пространство состоит из всех строк длиной от 2 до 63 символов, которые могут быть составлены из букв, цифр и дефисов, за которыми следует название домена — .com. Теперь вам должна стать понятной сама идея, в которой нет ничего сложного.

Немного сложнее понять, как каждой программе можно выделить свое собственное адресное пространство, поскольку адрес 28 в одной программе означает иное физическое место, чем адрес 28 в другой программе. Далее мы рассмотрим простой способ, который ранее был распространен, но вышел из употребления с появлением возможностей размещения на современных центральных процессорах более сложных (и более совершенных) схем.

Перспективы

В перспективе изменится материальная часть процессоров ввиду того, что технологический процесс достигнет физических пределов производства. Имеются различные направления. 
 

 

  • Оптические компьютеры — в которых вместо электрических сигналов обработке подвергаются потоки света (фотоны, а не электроны).

  • Квантовые компьютеры, работа которых всецело базируется на квантовых эффектах. В настоящее время ведутся работы над созданием рабочих версий квантовых процессоров.

  • Молекулярные компьютеры — вычислительные системы, использующие вычислительные возможности молекул (преимущественно органических). Молекулярными компьютерами используется идея вычислительных возможностей расположения атомов в пространстве.

 

Литература:

https://ru.wikipedia.org/wiki/Процессор#.D0.9F.D0.B5.D1.80.D1.81.D0.BF.D0.B5.D0.BA.D1.82.D0.B8.D0.B2.D1.8B

http://gooosha.ru/chto-takoe-taktovaya-chastota-processora-cpu/

http://studopedia.org/4-21591.html

http://www.distedu.ru/mirror/_inform/nsk.fio.ru/works/informatics/computer/processor.htm

 

 

 

Москва 2015


Информация о работе Процессор компьютера. Основные характеристики (разрядность, адресное пространство и др.)