Предоставление графической информации в компьютере

Автор: Пользователь скрыл имя, 14 Декабря 2012 в 07:37, доклад

Краткое описание

Все известные форматы представления изображений (как неподвижных, так и движущихся) можно разделить нарастровые и векторные. В векторном формате изображение разделяется на примитивы - прямые линии, многоугольники, окружности и сегменты окружностей, параметрические кривые, залитые определенным цветом или шаблоном, связные области, набранные определенным шрифтом отрывки текста и т. д.

Файлы: 1 файл

представление информации.docx

— 78.97 Кб (Скачать)

Представление графической информации в компьютере

Все известные форматы  представления изображений (как  неподвижных, так и движущихся) можно  разделить на растровые и векторные. В векторном формате изображение разделяется на примитивы - прямые линии, многоугольники, окружности и сегменты окружностей, параметрические кривые, залитые определенным цветом или шаблоном, связные области, набранные определенным шрифтом отрывки текста и т. д. (см. рис.). Для пересекающихся примитивов задается порядок, в котором один из них перекрывает другой. Некоторые форматы, например, PostScript, позволяют задавать собственные примитивы, аналогично тому, как в языках программирования можно описывать подпрограммы. Такие форматы часто имеют переменные и условные операторы и представляют собой полнофункциональный (хотя и специализированный) язык программирования.

Рис.1

Каждый примитив описывается своими геометрическими  координатами. Точность описания в  разных форматах различна, нередко  используются числа с плавающей  точкой двойной точности или с  фиксированной точкой и точностью  до 16-го двоичного знака. Координаты примитивов бывают как двух-, так и трехмерными. Для трехмерных изображений, естественно, набор примитивов расширяется, в него включаются и различные поверхности - сферы, эллипсоиды и их сегменты, параметрические многообразия и др. (см. рис.).

рис.2

Двухмерные векторные  форматы очень хороши для-представления чертежей, диаграмм, шрифтов (или, если угодно, отдельных букв шрифта) и отформатированных текстов. Такие изображения удобно редактировать - изображения и их отдельные элементы легко поддаются масштабированию и другим преобразованиям. Примеры двухмерных векторных форматов - PostScript, PDF (Portable Document Format, специализированное подмножество PostScript), WMF (Windows MetaFile), PCL (Printer Control Language, система команд принтеров, поддерживаемая большинством современных лазерных и струйных печатающих устройств). Примером векторного представления движущихся изображений является MacroMedia Flash. Трехмерные векторные форматы широко используются в системах автоматизированного проектирования и для генерации фотореалистичных изображений методами трассировки лучей и т. д. Однако преобразование реальной сцены (например, полученной оцифровкой видеоизображения или сканированием фотографии) в векторный формат представляет собой сложную и, в общем случае, неразрешимую задачу. Программы-векторизаторы существуют, но потребляют очень много ресурсов, а качество изображения во многих случаях получается низким. Самое же главное - создание фотореалистичных (фотографических или имитирующих фотографию) изображений в векторном формате, хотя теоретически и, возможно, на практике требует большого числа очень сложных примитивов. Гораздо более практичным для этих целей оказался другой подход к оцифровке изображений, который использует большинство современных устройств визуализации: растровые дисплеи и многие печатающие устройства. В растровом формате изображение разбивается на прямоугольную матрицу элементов, называемых пикселами (слегка искаженное PICture ELement - этемент картинки). Матрица называется растром. Для каждого пиксела определяется его яркость и, если изображение цветное, цвет. Если, как это часто бывает при оцифровке реальных сцен или преобразовании в растровый формат (растеризации) векторных изображений, в один пиксел попали несколько элементов, их яркость и цвет усредняются с учетом занимаемой площади. При оцифровке усреднение выполняется аналоговыми контурами аналого-цифрового преобразователя, при растеризации - алгоритмами анти-алиасинга. Размер матрицы называется разрешением растрового изображения. Для печатающих устройств (и при растеризации изображений, предназначенных для таких устройств) обычно задается неполный размер матрицы, соответствующей всему печатному листу, а количество пикселов, приходящихся на вертикальный или горизонтальный отрезок длиной 1 дюйм; соответствующая единица так и называется - точки на дюйм (DPI, Dots Per Inch). Для черно-белой печати обычно достаточно 300 или 600 DPI. Однако принтеры, в отличие от растровых терминалов, не умеют манипулировать яркостью отдельной точки, поэтому изменения яркости приходится имитировать, разбивая изображение на квадратные участки и регулируя яркость относительным количеством черных и белых (или цветных и белых при цветной печати) точек в этом участке. Для получения таким способом приемлемого качества фотореалистичных изображений 300 DPI заведомо недостаточно, и даже бытовым принтерам приходится использовать гораздо более высокие разрешения, вплоть до 2400 DPI. Вторым параметром растрового изображения является разрядность одного пиксела, которую называют цветовой глубиной. Для черно-белых изображений достаточно одного бита на пиксел, для градаций яркости серого или цветовых составляющих изображения необходимо несколько битов (см. рис.). В цветных изображениях пиксел разбивается на три или четыре составляющие, соответствующие разным цветам спектра. В промежуточных данных, используемых при оцифровке и редактировании растровых изображений, цветовая глубина достигает 48 или 64 бит (16 бит на цветовую составляющую). Яркостный диапазон современных Мониторов, впрочем, позволяет ограничиться 8-ю битами, т. е. 256 градациями, на одну цветовую составляющую: большее количество градаций просто незаметно глазу.

Рис.3

Наиболее широко используемые цветовые модели - это RGB (Red, Green, Blue - красный, зеленый, синий, соответствующие максимумам частотной характеристики светочувствительных пигментов человеческого глаза), CMY (Cyan, Magenta, Yellow - голубой, пурпурный, желтый, дополнительные к RGB) и CMYG - те же цвета, но с добавлением градаций серого. Цветовая модель RGB используется в цветных кинескопах и видеоадаптерах, CMYG - в цветной полиграфии. В различных графических форматах используется разный способ хранения пикселов. Два основных подхода - хранить числа, соответствующие пикселам, одно за другим, или разбивать изображение на битовые плоскости - сначала хранятся младшие биты всех пикселов, потом - вторые и так далее. Обычно растровое изображение снабжается заголовком, в котором указано его разрешение, глубина пиксела и, нередко, используемая цветовая модель.

Кодирование цветов

Любой цвет точки  на экране компьютера получается путем  смешивания трех базовых цветов: красного, зеленого, синего

Такая модель называется RGB.

Закодируем  базовые цвета:

  • 1 - наличие базового цвета в системе RGB
  • 0 - отсутствие базового цвета в системе RGB

Например, 100 - присутствует только красный цвет

Цветовая модель RGB

N = 2i

N- количество цветов;

i - количество бит на 1 пиксель (глубина цвета)

Количество бит  на 1 пиксель

Формула

Количество цветов в палитре

1 бит

21

2

2 бита

22

4

3 бита

23

8

4 бита

24

16

8 бит

28

256

16 бит

216

65 536

24 бита

224

16 777 216


M- объем памяти на все изображение;

К- общее количество пикселей;

i- количество бит на 1 пиксель.

M = K*i

 

пРЕДСТАВЛЕНИЕ ЗВУКОВОЙ ИНФОРМАЦИИ В  КОМПЬЮТЕРЕ

Приёмы и методы работы со звуковой информацией пришли в вычислительную технику наиболее поздно. К тому же, в отличие от числовых, текстовых и графических  данных, у звукозаписей не было столь  же длительной и проверенной истории  кодирования. В итоге методы кодирования  звуковой информации двоичным кодом  далеки от стандартизации. Множество  отдельных компаний разработали  свои корпоративные стандарты, но среди  них можно выделить два основных направления.

  1. Метод FM (Frequency Modulation) основан та том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, а, следовательно, может быть описан числовыми параметрами, т.е. кодом. В природе звуковые сигналы имеют непрерывный спектр, т.е. являются аналоговыми. Их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальный устройства - аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). При таких преобразованиях неизбежны потери информации, связанные с методом кодирования, поэтому качество звукозаписи обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окрасом характерным для электронной музыки. В то же время данный метод копирования обеспечивает весьма компактный код, поэтому он нашёл применение ещё в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.
  2. Метод таблично волнового (Wave-Table) синтеза лучше соответствует современному уровню развития техники. В заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментах. В технике такие образцы называют сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые параметры среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звучания. Поскольку в качестве образцов исполняются реальные звуки, то его качество получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

Развитие аппаратной базы современных компьютеров параллельно  с развитием программного обеспечения  позволяет сегодня записывать и  воспроизводить на компьютерах музыку и человеческую речь. Существуют два  способа звукозаписи:

  • цифровая запись, когда реальные звуковые волны преобразуются в цифровую информацию путем измерения звука тысячи раз в секунду;
  • MIDI-запись, которая, вообще говоря, является не реальным звуком, а записью определенных команд-указаний (какие клавиши надо нажимать, например, на синтезаторе). MIDI-запись является электронным эквивалентом записи игры на фортепиано.

Для того чтобы воспользоваться  первым указанным способом в компьютере должна быть звуковая карта (платаРеальные звуковые волны имеют весьма сложную форму и для получения их высококачественного цифрового представления требуется высокая частота квантованияЗвуковая плата преобразует звук в цифровую информацию путем измерения характеристики звука (уровень сигнала) несколько тысяч раз в секунду. То есть аналоговый (непрерывный) сигнал измеряется в тысячах точек, и получившиеся значения записываются в виде 0 и 1 в память компьютера. При воспроизведении звука специальное устройство на звуковой карте преобразует цифры в аналог звуковой волны. Хранение звука в виде цифровой записи занимает достаточно много места в памяти компьютера. Число разрядов, используемое для создания цифрового звука, определяет качество звучанияMIDI-запись была разработана в начале 80-х годов (MIDI - Musical Instrument Digital Interfase - интерфейс цифровых музыкальных инструментов). MIDI-информация представляет собой команды, а не звуковую волну. Эти команды - инструкции синтезатору. МIDI-команды гораздо удобнее для хранения музыкальной информации, чем цифровая запись. Однако для записи MIDI-команд вам потребуется устройство, имитирующее клавишный синтезатор, которое воспринимает МIDI-команды и при их получении может генерировать соответствующие звуки. Таким образом, рассмотрев принципы хранения в ЭВМ различных видов информации, можно сделать важный вывод о том, что все они так или иначе преобразуются в числовую форму и кодируются набором нулей и единиц. Благодаря такой универсальности представления данных, если из памяти наудачу извлечь содержимое какой-нибудь ячейки, то принципиально невозможно определить, какая именно информация там закодирована: текст, число или картинка.


Информация о работе Предоставление графической информации в компьютере