Перспективы развития ПК

Автор: Пользователь скрыл имя, 10 Ноября 2010 в 16:48, дипломная работа

Краткое описание

На сегодняшний день вряд ли можно сказать, как именно он будет устроен самый “последний” компьютер.
Нам необходимо:
• Проанализировать ведущие из существующих на сегодняшний день аппаратные средства компьютеров. Также для составления детальных представлений о задачах, проблемах и методах их решений в данной теории тесно связано с возможными вариантами прогресса компьютерной техники. На базе данной теории необходим краткий экскурс в историю развития вычислительной техники.
• Второй нашей задачей является выяснить основные направления развития ПК на основе рассмотренного материала.
Войдя в жизнь человеческого общества, компьютеры взяли на себя огромный круг задач – начиная от простейших алгебраических вычислений и кончая организацией процессов биржевой деятельности, международных телеконференций, моделированием сложных физических, химических, технологических процессов, мультимедийными и виртуальными развлечениями, наконец.

Оглавление

Введение…………………………………………………………………………………...3
1. Функциональная и структурная организация современного ПК …………………...6
1.1. Основные блоки ПК и их назначение ………………………………………………6
1.2. Анализ современных аппаратных средств ПК…………………………………..22
2. Перспективные технологии развития ПК……………………………………...........35
3. Требования к конфигурации ПК со стороны прикладных программ……………...53
Заключение…………………………………………………………………………….....55
Глоссарий………………………………………………………………………………...58
Список используемых источников……………………………………………………..60
Приложение А……………………………………………………………………………62
Приложение Б……………………………………………………………………………63

Файлы: 3 файла

Введение.doc

— 32.50 Кб (Открыть, Скачать)

диплом.doc

— 766.00 Кб (Скачать)

     НЖМД  весьма разнообразны. Диаметр дисков чаще всего 3,5 дюйма (89 мм). Наиболее распространенная высота корпуса дисковода: 25 мм - у настольных ПК, 41 мм, у машин-серверов, 12 мм - у портативных ПК, существуют и другие. Внешние дорожки диска длиннее внутренних. Поэтому в современных жестких дисках используется метод зонной записи. В этом случае все пространство диска делится на несколько зон, причем во внешних зонах размещается больше секторов данных, чем во внутренних. Это, в частности, позволило увеличить емкость жестких дисков примерно на 30%.

     Есть  два основных режима обмена данными  между HDD и ОП:

  • Programmed Input/Output (PIO - программируемый ввод-вывод);
  • Direct Memory Access (DMA-прямой доступ к памяти).

     РIO - это режим, при котором перемещение данных между периферийным устройством (жестким диском) и оперативной памятью происходит с участием центрального процессора. Существуют следующие режимы передачи: PIO0, PIO1, РIO2, РIOЗ, РIO4. Причем PIO0 самый «медленный», а РIO4 - самый «быстрый» (16,6 Мбайт/с). Режимы РIO в современных ПК используются редко, поскольку сильно загружают процессор.

     DMA - это режим, в котором винчестер напрямую общается с оперативной памятью безучастия центрального процессора, перехватывая управление шиной. Режимы DMA при интерфейсах IDE поддерживают протоколы SW (SingleWord - однословный) и MW (MultiWord - «многословный»), обеспечивающие трансфер до 66 Мбайт/с (при протоколе MW3 DMA). При интерфейсах SCSI может быть достигнута более высокая скорость передачи. Так, (Ultra2 Wide - SCASI работает на тактовой частоте 40 МГц; имеет Widе (ширину шины) 16 битов) и обеспечивает пропускную способность 80 Мбайт/с, при этом позволяет подключать до 15 накопителей к одному контроллеру интерфейса. А технология FC-AL (Fibre Channel-Arbitrated Loop), использующая оптоволоконные каналы связи для жестких дисков SCSI, обеспечивает трансфер 200 Мбайт/с и возможность подключения до 256 устройств (используется, естественно, не в ПК, а в больших системах и в дисковых массивах - RAID).

     Время доступа к информации на диске  напрямую связано со скоростью вращения дисков. Стандартные скорости вращения для интерфейса IDE - 3600, 4500, 5400 и 7200 оборотов/мин; при интерфейсе SCSI используются скорости до 10 000 и даже до 15 000 оборотов/мин. При скорости 10 000 оборотов/мин среднее время доступа составляет 5,5 мс. Для повышения скорости обмена данными процессора с дисками НЖМД следует кешировать. Кэш-память для дисков имеет то же функциональное назначение, что и кэш для основной памяти, то есть служит быстродействующим буфером для кратковременного хранения информации, считываемой или записываемой на диск. Кэш-память может быть на флэш-памяти, встроенной в дисковод, а может создаваться программным путем (например, драйвером Microsoft Smartdrive) в оперативной памяти. Емкость кэш-памяти диска обычно составляет 2-4 Мбайт, реже - 8 Мбайт, а скорость обмена данными процессора с кэш-памятью достигает 100 Мбайт/с. Для того чтобы получить на магнитном носителе структуру диска, включающую в себя дорожки и секторы, над ним должна быть выполнена процедура, называемая физическим, или низкоуровневым, форматированием (physical или low-level formatting). В ходе выполнения этой процедуры контроллер записывает на носитель служебную информацию, которая определяет разметку цилиндров диска на секторы и нумерует их. Форматирование низкого уровня предусматривает и маркировку дефектных секторов для исключения обращения к ним в процессе эксплуатации диска[30].

     Существует  и технология SMART (Self-Monitoring Analysis and Reporting Technology) - технология самотестирования и анализа, осуществляющая автоматическую проверку целостности данных, состояния поверхности дисков, перенос информации с критических участков на нормальные и другие операции без участия пользователя. Кроме того, при появлении и нарастании серьезных ошибок, SMART своевременно выдает сообщение о необходимости принятия мер по спасению данных.

     В ПК имеется обычно один, реже несколько, накопителей на жестких магнитных  дисках. Однако в MS-DOS программными средствами один физический диск может быть разделен на несколько «логических» дисков; тем самым имитируется несколько НМД на одном накопителе [5. с.413]. 

     1.2. Анализ современных  аппаратных  средств ПК 

     Большинство современных ПК типа IBM PC используют МП типа CISC, выпускаемые многими фирмами: Intel, AMD, Cyrix, IBM и др. «Законодателем мод» здесь выступает Intel, но ей «на пятки» наступает AMD, в последние годы создавшая МП, по некоторым параметрам превосходящие «интеловские». Все же пока МП фирмы Intel имеют большее распространение[12. с.94].

Следует знать следующее:

  • у микропроцессоров 80386 (386), 80486 (486) есть модификации с буквами SX, DX, SL и т. д., отличающиеся от базовой модели разрядностью шины, тактовой частотой, надежностью, габаритами, потреблением энергии, амплитудой напряжения и другими параметрами;
  • микропроцессоры Pentium - Pentium 4 имеют много различных модификаций, некоторые из них будут названы ниже;
  • число элементов - это количество элементарных полупроводниковых переходов, размещенных в интегральной схеме МП. Технология обычно характеризуется размером элемента в микронах (микронная технология);
  • микропроцессоры 486DX и выше имеют встроенный математический сопроцессор, могут работать с умножением внутренней частоты. С увеличенной частотой работают только внутренние схемы МП, все внешние по отношению к МП схемы, в том числе расположенные на системной плате, работают с обычной частотой;
  • у МП 80286 и выше конвейерное выполнение команд. В МП 286 предусмотрены регистры для очереди команд общим размером 6 байт, в МП 486 - 16 байт и т. д. Конвейерное выполнение команд - это одновременное выполнение разных тактов последовательных команд в разных частях МП при непосредственной передаче результатов из одной части МП в другую. Конвейерное выполнение команд увеличивает эффективное быстродействие ПК в 2-5 раз;
  • у МП 80286 и выше есть возможность работы в вычислительной сети;
  • у МП 80286 и выше имеется возможность многозадачной работы (многопрограммность) и сопутствующая ей защита памяти;
  • современные микропроцессоры имеют два режима работы:
  1. реальный (однозадачный, Real Address Mode), в котором возможно выполнение только одной программы и непосредственно адресоваться могут только (1024 = 64) Кбайт основной памяти компьютера, а остальная память (расширенная) доступна лишь при подключении специальных драйверов;
  1. защищенный (многозадачный, Protected Virtual Address Mode), обеспечивающий выполнение одновременно нескольких программ, непосредственную адресацию и прямой доступ (без дополнительных драйверов) к расширенной основной памяти. Предоставляется доступ к памяти емкостью 16 Мбайт для МП 286; 4 Гбайт для процессоров 386, 486, Celeron; 128 Гбайт для МП Pentium Хеоп и 64 Гбайт для остальных процессоров Pentium, а при страничной организации памяти - к 16 Тбайт виртуальной памяти каждой задаче. В этом режиме осуществляется автоматическое распределение памяти между выполняемыми программами и соответствующая ее защита от обращений со стороны чужих программ. Защищенный режим поддерживается операционными системами Windows, OS/2, UNIX и т. д.
  • в МП 80386 и выше встроена поддержка системы виртуальных машин. Система виртуальных машин является дальнейшим развитием режима многозадачной работы, при котором каждая задача может выполняться под управлением своей операционной системы, то есть практически в одном МП моделируется как бы несколько компьютеров, работающих параллельно и имеющих разные операционные системы;
  • у МП 80486 и выше имеется поддержка кэш-памяти;
  • у МП 80486 и выше имеются RISC-элементы, позволяющие выполнять усеченные команды за 1 такт.

     Рассмотрим основные особенности микропроцессоров Pentium 4.

     По  сравнению с Pentium в него добавлены новые потоковые инструкции, расширяющие набор SIMD-инструкций, ориентированных на форматы данных с плавающей запятой - SSE2. Модуль вычислений с плавающей запятой и потоковый модуль оптимизированы для работы с аудио и видеопотоками, а также с 3D-технологиями.

     Имеется кэш 2-го уровня размером не менее 256 Кбайт; он работает на полной частоте МП, использует встроенную программу коррекции  ошибок и обслуживается быстродействующей шиной с разрядностью 256 бит (32 байт), работающей на частоте МП. Это для Pentium 4 с частотой 1500 МГц, например, обеспечивает скорость обмена с кэшем 48 Гбайт/с [17. с.100].

     Есть  возможность работы с системной  шиной с эквивалентной частотой 400 МГц (QuardPumped Bus пo 100 МГц), что обеспечивает скорость обмена 3,2 Гбайт/с.

     Вновь улучшена система «динамического исполнения» (dynamic execution), что, в первую очередь, связано с наличием 20 - ступенной (у МП Pentium III конвейер имел 10 ступеней) суперконвейерной структуры (superpipelining), лучшего предсказания ветвлений программы при условных передачах управления (branch prediction) и параллельного «по предположению» (опережающего, спекулятивного) исполнения команд по нескольким предполагаемым путям ветвления (speculative execution). Поясню это. Динамическое исполнение позволяет процессору предсказывать порядок выполнения инструкций при помощи технологии множественного предсказания ветвлений, которая прогнозирует прохождение программы по нескольким ветвям. Это оказывается возможным, поскольку в процессе исполнения инструкции процессор просматривает программу на несколько шагов вперед. Технология анализа потока данных позволяет проанализировать программу и составить ожидаемую последовательность исполнения инструкций. И наконец, опережающее выполнение повышает скорость работы программы ввиду выполнения нескольких инструкций одновременно, по мере их поступления в ожидаемой последовательности - то есть по предположению (интеллектуально) Поскольку выполнение инструкций происходит на основе предсказания ветвлений, результаты сохраняются как «интеллектуальные» с последующим удалением тех, которые вызваны промахами в предсказании. Используется новая микроархитектура, базирующаяся на двух параллельных 32-битовых конвейерах и поддерживающая технологию поточной обработки Hyper Pipelined. Это позволило сделать эффективным длинный конвейер. Суть в том, что при длинном конвейере в задачах с частыми условными переходами его эффективность снижается. Два параллельных конвейера снижение эффективности уменьшают. Теперь реальна ситуация, когда в каждый момент времени одна инструкция загружается, другая декодируется, для третьей (или нескольких) формируется пакет данных, четвертая инструкция (или несколько) исполняется, для пятой записывается результат. И если при строго последовательном исполнении инструкций даже самые короткие операции исполнялись за 5 тактов, то при такой поточной обработке многие инструкции могут быть выполнены за такт[11. с.125].

     Новая технология ускоренных вычислений (Rapid Execution Engine) использует два быстрых, работающих на удвоенной частоте процессора АЛУ, выполняющие короткие арифметические и логические операции за 0,5 такта, и третье, медленное АЛУ, исполняющее длинные операции (умножение, деление и т. д.).

     Процессор имеет площадь кристалла 217 мм2, потребляет 52 Вт при частоте 1500 МГц, содержит 42 млн транзисторов. На базе Pentium 4 можно создать высокоэффективную ММХ-систему, но для этого необходимо наличие:

  • программного обеспечения, ориентированного на использование дополнительных команд этого процессора;
  • системной платы с чипсетами, поддерживающими данные микропроцессоры.

     Особо следует сказать о поддерживаемой некоторыми МП Pentium 4 технологии Hyper Threading.

     Технология Hyper Treading (tread - тред, поток), реализует многопоточное исполнение программ: на одном физическом процессоре можно одновременно исполнять два задания или два потока команд одной программы (операционная система «видит» два виртуальных процессора вместо одного). Иначе говоря, эта технология на базе одного МП формирует два виртуальных процессора, работающих параллельно и, в известной степени, независимо. Hyper Treading (HT) обеспечивает повышение производительности (до 30%) в многозадачных средах и при исполнении программ, которые допускают многопоточное исполнение.

     Технология  НТ была создана фирмой Intel изначально для серверных процессоров Хеоn с целью повышения производительности серверных систем: в них она дополняет традиционную многопроцессорность, обеспечивая дополнительные параллели в работе.

     Архитектурно  микропроцессоры, поддерживающие НТ, имеют  дополнительно группу дублирующих  регистров и логические схемы, назначающие  ресурсы потокам и средства APIC (Advanced Programmable Interrupt Controller), организующие прерывания для обработки потоков команд разными логическими процессорами. Кроме этого для поддержки Hyper Treading необходимы материнские платы с соответствующим BIOS, и с чипсетами Intel 845 РЕ и GE, Intel 865,875,915,925 и т. п., а также многозадачные операционные системы Windows XP, Linux (Windows 9х и ME не пригодны, Window 2000 может использоваться с дополнительной настройкой) [29. с.268].

     В 2000-2006 годах компания Intel представила МП четырех видов: для портативных (Pentium M), и настольных (Pentium 4E, Pentium D, Celeron D) компьютеров. 

     Микропроцессоры Pentium 4E 

     Семейство процессоров 7-го поколения, выполненных  по технологии 0,09 мкм МП Pentium 4E —  ядро Prescott под процессорный разъем Socket LGA 7751: Pentium 4E 2,8; 3; 3,2; 3,4, и 3,6 ГГц. Все МП имеют 1024 Кбайт кэш-память 2-го уровня. Были выпущены две модели МП Pentium 4EE - Extreme Edition (их также обозначают Pentium 4XE — eXtreme Edition - 3,2 и 3,4 ГГц, имеющие кэш-память 2 уровня 2048 Кбайт.

     Для всех микропроцессоров, выполненных  по технологии 0,09 мкм, нужны системные  чипсеты из семейств i900, iP или iX. Некоторые  МП, выполненные по технологии 0,09 мкм, поддерживают FSB до 1066 МГгц.

Оглавление.docx

— 14.36 Кб (Открыть, Скачать)

Информация о работе Перспективы развития ПК