Перспектива развития вычислительной техники

Автор: Пользователь скрыл имя, 01 Марта 2015 в 20:58, доклад

Краткое описание

Создание качественно новых вычислительных систем с более высокой производительностью и некоторыми характеристиками искусственного интеллекта, например с возможностью самообучения,- очень актуальная тема. Последние десять лет такие разработки ведутся во многих направлениях - наиболее успешными и быстро развивающимися из них являются квантовые компьютеры, нейрокомпьютеры и оптические компьютеры, поскольку современная элементная и технологическая база имеет все необходимое для их создания.

Файлы: 1 файл

Перспектива развития вычислительной техники.docx

— 81.20 Кб (Скачать)

Вступление

  Компьютеры появились очень давно в нашем мире, но только в последнее время их начали так усиленно использовать во многих отраслях человеческой жизни.

    Создание качественно  новых вычислительных систем  с более высокой производительностью  и некоторыми характеристиками  искусственного интеллекта, например  с возможностью самообучения,- очень  актуальная тема. Последние десять  лет такие разработки ведутся  во многих направлениях - наиболее  успешными и быстро развивающимися  из них являются квантовые  компьютеры, нейрокомпьютеры и оптические  компьютеры, поскольку современная  элементная и технологическая  база имеет все необходимое  для их создания. 

 

  1. Оптические компьютеры

     Еще в шестидесятые годы была начата разработка основных принципов построения оптических и оптико-электронных компьютеров.

Оптический компьютер - это устройство обработки информации с использованием света (Рис.1).

      Основная идея оптического компьютера, чтобы использовать свет, который состоит из фотонов, вместо электрического тока.

       В последнее время наблюдается большой ажиотаж вокруг оптических компьютеров: считают, что оптические компьютеры сейчас находятся на одном уровне развития с нейрокомпьютерами и квантовыми компьютерами. 

       Однако в кругах специалистов существует мнение, что оптический компьютер в "чистом" виде еще не разработан. На данный момент существует лишь электронно-оптический компьютер.

Преимущества оптических компьютеров при использовании фотонов, вместо электронов, многочисленны.

       Во-первых, частота световой волны на несколько порядоков выше частоты электрических сигналов и волн, используемых в современной компьютерной технике. Так, если электрическая волна, используемая, например, в радиотехнике, совершает приблизительно 100 тыс. колебаний в секунду, то световая волна имеет частоту, которая в 10-100 миллионов раз превосходит это значение. Потому с ее помощью в фиксированный интервал времени можно передавать большее число сигналов, а значит и информации. Кроме того, поскольку длина световой волны ничтожно мала, то имеется возможность обработки информации с необычайно высокой скоростью.

      Во-вторых, свет практически не нагревается, когда он идёт, в то время как электрический ток,который в настоящее время используется в компьютерах отдаёт много тепла. Компьютер не сможет работать также быстро,когда он перегревается. Оптические компьютеры будут использовать свет и поэтому компьютер может работать быстрее, не беспокоясь о перегреве.

       В-третьих, ключевое преимущество использования света - это его способность проходить через другие лучи света. Два лазера могут пересекаться друг с другом,не влияя на пути друг другу. Электрический ток не может это сделать и компьютер должен быть разработан таким образом,что бы они никогда не пересекались. Поскольку лучи света могут пересекаться друг с другом, требуется меньше места.В результате будут небольшие компьютеры,потому что будут иметь более мелкие части,используемые как в компьютерах и других видах техники.

 

Одна из старейших архитектур, разработанных для оптических компьютеров, архитектура OPLA (Optical Programmable Logic Array) - оптическая программируемая логическая матрица. Многолетние работы по реализации этой архитектуры проводились в Японии. На оптических интегральных схемах была реализована вся булева алгебра. Считалось даже, что компьютеры 5-го и 6-го поколения будут реализованы на оптической элементной базе. Но доведение до стадии коммерчески пригодных продуктов оказалось сложней и длительней, чем ожидалось, и последнее время сообщений о каких-либо успехах в этом направлении не было. Сейчас считают, что перенос традиционной архитектуры, использующей принцип машины фон Неймана, на оптическую элементную базу, вряд ли перспективен. С другой стороны, один из японских ученых как-то сказал, что если бы в оптические компьютеры вкладывалась хотя бы пятая часть капитала, вложенного в разработки традиционных компьютеров, все компьютеры давно были бы оптическими. Во всяком случае, у OPLA сохраняются шансы в применениях, использующих операции декомпозиции, анализа и сжатия изображений, а также в САПР и виртуальной реальности.    

В 1984 году Б. Дженкинс из Университета Южной Калифорнии продемонстрировал первый оптический компьютер, аппаратно выполнявший достаточно сложную последовательность команд. Взаимодействие двух лучей осуществлялось элементом, состоящим из жидкого кристалла и фотопроводника. Проходя, свет влияет на электрическое поле, приложенное к жидкому кристаллу, отчего меняется прозрачность элемента. Быстродействие элементов компьютера, реализованых на жидких кристаллах определялось временем переключения жидкокристаллической ячейки. Жидкие кристаллы значительно более инерционны, чем электронные схемы, поэтому высокое быстродействие на них недостижимо, однако, оптическая элементная база прекрасно сочетается с архитектурами нейронных сетей и хорошо подходит для решения интеллектуальных задач.   

В январе 1993 года большое впечатление на ученых и журналистов произвел оптический компьютер, разработанный в Университете Колорадо. Джордан, руководитель отдела цифровых оптических вычислений в Университете Колорадо и его коллега профессор Винсент Хейринг собирали свое детище (размером с небольшой автомобиль и с мощностью недорогого ПК) пять лет. Принципиальное отличие оптического компьютера от предшественников в том, что программа не "зашита", а хранится в оперативной памяти, которая представляет собой четырехкилометровые петли оптического волокна. По ним циркулируют импульсы инфракрасного излучения. Четырехметровый импульс кодирует 1, его отсутствие - 0. Это - 1 бит информации. Такой способ хранения информации авторы называют пространственно-временным способом хранения. Кодированные таким образом команды и данные курсируют в линиях задержки, пока управляющий элемент не направит их в процессор. Архитектура получила название bit-serial architecture (битовая последовательная архитектура

 

     В настоящее время, оптическая технология используется в лазерных принтерах, сканерах, и даже в компьютерных компакт-дисках. Лазеры используют свет для выполнения всех этих процессов. Оптическая технология может создать большую скорость подключения к Интернету, чем те, что были доступны ранее. Благодаря комбинации оптических компьютеров,э то возможный новый тип Интернет-соединения, потому что оптические компьютеры могут выполнять задачи практически мгновенно.

Видео

  1. Квантовый компьютер

       Основоположником  теории создания квантовых компьютеров  был советский ученый. Математик  Юрий Манин еще в 1980 году впервые  предложил использовать квантовую  систему для вычислений, однако  первый прототип компьютера появился  в 2001 году в Ванкувере.

       Итак, что же такое квантовый компьютер? Основной его строительной единицей является кубит (qubit, Quantum Bit). Классический бит имеет лишь два состояния - 0 и 1, тогда как состояний кубита значительно больше.

       Способность находиться в двух состояниях одновременно является ключевым принципом квантовых компьютеров. В отличие от традиционных компьютеров, которые записывают биты информации в состояниях нуль или единица, квантовые компьютеры, используют свойства атомов, чтобы записывать два значения сразу.

       По замыслу, это свойство позволит им выполнять несколько вычислений параллельно, что сделает их значительно более мощными, чем традиционные компьютеры, которые выполняют операции в определенной последовательности.

Получается, в сердце квантового компьютера стоит уже не совсем обычный транзистор? 

Мы используем кубит (в данном случае, имеется в виду физический электронный прибор), который по своему назначению схож с обычным транзистором, но может иметь бесконечное число вариантов представления и хранения квантовой информации.

      На первый взгляд в нем нет ничего особенного — это маленькое плоское алюминиевое кольцо. Но в обычном состоянии, при комнатных температурах, оно ни на что не годится. Весь фокус состоит в том, чтобы переведя его в сверхпроводящее состояние, превратить его в квантовый объект, ток в котором может течь как по часовой, так и против часовой стрелке одновременно. Это и позволяет нашему кубиту принимать одновременно значения нуля и единицы.

Для того, чтобы ввести проводник в «неопределенное» квантовое состояние, которое допускает множество вариантов вычислений, кольца алюминия охлаждают жидким гелем до температуры почти абсолютного нуля. Затем помещают в сверхточно настроенное слабое магнитное поле. Низкая температура подавляет различные шумовые помехи в этом магнитном поле, что позволяет общаться с кубитом посредством микроволн и считывать его ответ. Чтобы превратить кубит в математического гения, его, надо постоянно поддерживать в этом квантовом состоянии, заставляя вести счет в сверхбыстром режиме.

 

Так выглядит чип с кубитами (в центре).

Сложность в том, что в этом почти нереальном мире кубиты «живут» лишь микросекунды, а затем спешат вернуться в обычное «заурядное» состояние. Но и за этот миг они успевают просчитать сотни операций.

Собственно, особые температурные условия, в которых должны находиться кубиты во время работы системы, - это пока один из недостатков квантовых технологий. Для их поддержания необходимы специальные установки, громоздкое оборудование. Но ученые наверняка решат эту проблему в будущем.

Видео

  1. Нейрокомпьютеры

     Для решения некоторых задач требуется создание эффективной системы искусственного интеллекта, которая могла бы обрабатывать информацию, не затрачивая много вычислительных ресурсов. И разработчиков "осенило": мозг и нервная система живых организмов позволяют решать задачи управления и эффективно обрабатывать сенсорную информацию, а это огромный плюс для создаваемых вычислительных систем. Именно это послужило предпосылкой создания искусственных вычислительных систем на базе нейронных систем живого мира.

      Создание компьютера на основе нейронных систем живого мира базируется на теории перцептронов, разработчиком которой был Розенблатт. Он предложил понятие перцептрона - искусственной нейронной сети, которая может обучаться распознаванию образов. Предположим, что есть некоторая зенитно-ракетная установка, задача которой - распознать цель и определить наиболее опасную из них. Также есть два самолета вероятного противника: штурмовик и бомбардировщик. Зенитно-ракетная установка, используя оптические средства, фотографирует самолеты и отправляет полученные снимки на вход нейронной сети (при полностью сфотографированном самолете нейронная сеть быстро распознает его). Но если снимок получился плохо, то именно здесь используются основные свойства нейронной сети, одно из которых - возможность к самообучению. Например, на снимке отсутствует одно крыло и хвостовая часть самолета. Через некоторое (приемлемое) время нейронная сеть сама дорисовывает отсутствующие части и определяет тип этого самолета и дальнейшие действия по отношению к нему. Из распознанных штурмовика и бомбардировщика оператор данной зенитно-ракетной установки выберет для уничтожения более опасный самолет.

       Перспективность создания компьютеров по теории Розенблатта состоит в том, что структуры, имеющие свойства мозга и нервной системы, имеют ряд особенностей, которые сильно помогают при решении сложных задач:

1. Параллельность обработки информации.

2. Способность к обучению.

3. Способность к автоматической  классификации.

4. Высокая надежность.

       Нейрокомпьютеры - это совершенно новый тип вычислительной техники, иногда их называют биокомпьютерами. Нейрокомпьютеры можно строить на базе нейрочипов, которые функционально ориентированы на конкретный алгоритм, на решение конкретной задачи. Для решения задач разного типа требуется нейронная сеть разной топологии (топология - специальное расположение вершин, в данном случае нейрочипов, и пути их соединения). Возможна эмуляция нейрокомпьютеров (моделирование) - как программно на ПЭВМ и суперЭВМ, так и программно-аппаратно на цифровых супербольших интегральных схемах.

      Искусственная нейронная сеть построена на нейроноподобных элементах - искусственных нейронах и нейроноподобных связях. Здесь важно заметить, что один искусственный нейрон может использоваться в работе нескольких (приблизительно похожих) алгоритмов обработки информации в сети.

      Нейрокомпьютеры позволяют с высокой эффективностью решать целый ряд интеллектуальных задач.

Управление в режиме реального времени: самолетами, ракетами и технологическими процессами непрерывного производства (металлургического, химического и др.)

Распознавание образов: человеческих лиц, букв и иероглифов, сигналов радара и сонара, отпечатков пальцев в криминалистике, заболеваний по симптомам (в медицине) и местностей, где следует искать полезные ископаемые (в геологии, по косвенным признакам)

Прогнозы: погоды, курса акций (и других финансовых показателей), исхода лечения, политических событий (в частности результатов выборов), поведения противников в военном конфликте и в экономической конкуренции

Оптимизация и поиск наилучших вариантов: при конструировании технических устройств, выборе экономической стратегии и при лечении больного 

      Нейрокомпьютеры отличаются от ЭВМ предыдущихи поколений не просто большими возможностями. Принципиально меняется способ использования машины. Место программирования занимает обучение, нейрокомпьютер учится решать задачи.

Заключение

       Так  на какой же основе будет  построена вычислительная система  будущего? Попробуем ответить на  этот вопрос. В данной работе  рассматривались три вида компьютеров: квантовые компьютеры, которые построены  на основе явлений, возникающих  в квантовой физике и дающих  мощный вычислительный агрегат  при решении задач сложных  вычислений; нейрокомпьютеры и оптические  компьютеры, которые построены на  различной теоретической базе, но  схожи в том, что и те и  другие занимаются обработкой  информации. С достоверностью известно, что уже сейчас существуют  системы обработки информации, построенные  на объединении оптических и  нейронных компьютеров, - это так  называемые нейроно-оптические компьютеры. Для того чтобы создать мощную систему обработки информации, пришлось разработать гибридную систему, т. е. имеющую свойства как оптических, так и нейронных компьютеров. Можно предположить, что объединение квантовых и нейроно-оптических компьютеров даст миру самую мощную гибридную вычислительную систему. Такую систему от обычной будут отличать огромная производительность (за счет параллелизма) и возможность эффективной обработки и управления сенсорной информацией. Но это лишь предположение, которое никакими фактическими доказательствами в настоящее время не подкреплено. Но технология создания вычислительных систем не стоит на месте, и в ближайшем будущем на рынке возможно появление новых вычислительных систем.

Информация о работе Перспектива развития вычислительной техники