Автор: Пользователь скрыл имя, 09 Марта 2013 в 10:59, лекция
Традиционно фиксация данных осуществляется с помощью конкретного средства общения (например, с помощью естественного языка или изображений) на конкретном носителе (например, камне или бумаге). Обычно данные (факты, явления, события, идеи или предметы) и их интерпретация (семантика) фиксируются совместно, так как естественный язык достаточно гибок для представления того и другого. Примером может служить утверждение "Стоимость авиабилета 128". Здесь "128" – данное, а "Стоимость авиабилета" – его семантика.
Глава 1. Что такое базы данных и СУБД
1.1. Данные и ЭВМ
1.2. Концепция баз данных
1.3. Архитектура СУБД
1.4. Модели данных
Глава 2. Инфологическая модель данных "Сущность-связь"
2.1. Основные понятия
2.2. Характеристика связей и язык моделирования
2.3. Классификация сущностей
2.4. О первичных и внешних ключах
2.5. Ограничения целостности
2.6. О построении инфологической модели
Глава 3. Реляционный подход
3.1. Реляционная структура данных
3.2. Реляционная база данных
3.3. Манипулирование реляционными данными
Глава 4. Введение в проектирование реляционных баз данных
4.1. Цели проектирования
4.2. Универсальное отношение
4.3. Почему проект БД может быть плохим?
4.4. О нормализации, функциональных и многозначных зависимостях
4.5. Нормальные формы
4.6. Процедура нормализации
4.7. Процедура проектирования
4.8. Различные советы и рекомендации
Глава 5. Пример проектирования базы данных "Библиотека"
5.1. Назначение и предметная область
5.2. Построение инфологической модели
5.3. Проектирование базы данных
Литература
Предметный указатель
Рис. 4.3. Преобразование универсального отношения "Питание" (первый вариант)
Включение. Простым добавлением строк (Поставщики; "Няринга", Вильнюс, Литва) и (Поставки; "Няринга", Вильнюс, Огурцы, 40) можно ввести информацию о новом поставщике. Аналогично можно ввести данные о новом продукте (Продукты; Баклажаны, 240) и (Поставки; "Полесье", Киев, Баклажаны, 50).
Удаление. Удаление сведений о некоторых поставках или блюдах не приводит к потере сведений о поставщиках.
Обновление. В таблицах рис. 4.3 все еще много повторяющихся данных, находящихся в связующих таблицах (Состав и Поставки). Следовательно, в данном варианте БД сохранилась потенциальная противоречивость: для изменения названия поставщика с "Полесье" на "Днепро" придется изменять не только строку таблицы Поставщики, но и множество строк таблицы Поставки. При этом не исключено, что в БД будут одновременно храниться: "Полесье", "Палесье", "Днепро", "Днипро" и другие варианты названий.
Кроме того, повторяющиеся текстовые данные (такие как название блюда "Рулет из телячей грудинки с сосисками и гарниром из разноцветного пюре" или продукта "Колбаса московская сырокопченая") существенно увеличивают объем хранимых данных.
Для исключения ссылок на длинные текстовые значения последние обычно нумеруют: нумеруют блюда в больших кулинарных книгах, товары (продукты) в каталогах и т.д. Воспользуемся этим приемом для исключения избыточного дублирования данных и появления ошибок при копировании длинных текстовых значений (рис. 4.4). Теперь при изменении названия поставщика "Полесье" на "Днепро" исправляется единственное значение в таблице Поставщики. И даже если оно вводится с ошибкой ("Днипро"), то это не может повлиять на связь между поставщиками и продуктами (в связующей таблице Поставки используются номера поставщиков и продуктов, а не их названия).
Блюда
|
Рецепты
|
Расход
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Продукты
|
Состав
|
Поставщики
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Поставки
|
Рис. 4.4. Преобразование универсального отношения "Питание" (второй вариант)
Нормализация – это разбиение таблицы на две или более, обладающих лучшими свойствами при включении, изменении и удалении данных. Окончательная цель нормализации сводится к получению такого проекта базы данных, в котором каждый факт появляется лишь в одном месте, т.е. исключена избыточность информации. Это делается не столько с целью экономии памяти, сколько для исключения возможной противоречивости хранимых данных.
Как указывалось в п. 3.1, каждая таблица в реляционной БД удовлетворяет условию, в соответствии с которым в позиции на пересечении каждой строки и столбца таблицы всегда находится единственное атомарное значение, и никогда не может быть множества таких значений. Любая таблица, удовлетворяющая этому условию, называется нормализованной (см. таблицы рис. 4.2 – 4.4). Фактически, ненормализованные таблицы, т.е. таблицы, содержащие повторяющиеся группы (см. рис. 4.1), даже не допускаются в реляционной БД.
Всякая нормализованная
Теперь в дополнение к 1НФ можно определить дальнейшие уровни нормализации – вторую нормальную форму (2НФ), третью нормальную форму (3НФ) и т.д. По существу, таблица находится в 2НФ, если она находится в 1НФ и удовлетворяет, кроме того, некоторому дополнительному условию, суть которого будет рассмотрена ниже. Таблица находится в 3НФ, если она находится в 2НФ и, помимо этого, удовлетворяет еще другому дополнительному условию и т.д.
Таким образом, каждая нормальная форма является в некотором смысле более ограниченной, но и более желательной, чем предшествующая. Это связано с тем, что "(N+1)-я нормальная форма" не обладает некоторыми непривлекательными особенностями, свойственным "N-й нормальной форме". Общий смысл дополнительного условия, налагаемого на (N+1)-ю нормальную форму по отношению к N-й нормальной форме, состоит в исключении этих непривлекательных особенностей. В п. 4.3 мы выявляли непривлекательные особенности таблицы рис. 4.2 и для их исключения выполняли "интуитивную нормализацию".
Теория нормализации основывается на наличии той или иной зависимости между полями таблицы. Определены два вида таких зависимостей: функциональные и многозначные.
Функциональная зависимость. Поле В таблицы функционально зависит от поля А той же таблицы в том и только в том случае, когда в любой заданный момент времени для каждого из различных значений поля А обязательно существует только одно из различных значений поля В. Отметим, что здесь допускается, что поля А и В могут быть составными.
Например, в таблице Блюда (рис. 4.4) поля Блюдо и Вид функционально зависят от ключа БЛ, а в таблице Поставщики рис. 4.3 поле Страна функционально зависит от составного ключа (Поставщик, Город). Однако последняя зависимость не является функционально полной, так как Страна функционально зависит и от части ключа – поля Город.
Полная функциональная зависимость. Поле В находится в полной функциональной зависимости от составного поля А, если оно функционально зависит от А и не зависит функционально от любого подмножества поля А.
Многозначная зависимость. Поле А многозначно определяет поле В той же таблицы, если для каждого значения поля А существует хорошо определенное множество соответствующих значений В.
Обучение
Дисциплина |
Преподаватель |
Учебник |
Информатика |
Шипилов П.А. |
Форсайт Р. Паскаль для всех |
Информатика |
Шипилов П.А. |
Уэйт М. и др. Язык Си |
Информатика |
Голованевский Г.Л. |
Форсайт Р. Паскаль для всех |
Информатика |
Голованевский Г.Л. |
Уэйт М. и др. Язык Си |
... |
... |
... |
Рис. 4.5. К иллюстрации многозначных зависимостей
Для примера рассмотрим таблицу "Обучение" (рис. 4.5). В ней есть многозначная зависимость "Дисциплина-Преподаватель": дисциплина (в примере Информатика) может может читаться несколькими преподавателями (в примере Шипиловым и Голованевским). Есть и другая многозначная зависимость "Дисциплина-Учебник": при изучении Информатики используются учебники "Паскаль для всех" и "Язык Си". При этом Преподаватель и Учебник не связныфункциональной зависимостью, что приводит к появлению избыточности (для добавление еще одного учебника придется ввести в таблицу две новых строки). Дело улучшается при замене этой таблицы на две: (Дисциплина-Преподаватель и Дисциплина-Учебник).
В п. 4.4 было дано определение первой нормальной формы (1НФ). Приведем здесь более строгое ее определение, а также определения других нормальных форм.
Таблица находится в первой нормальной форме (1НФ) тогда и только тогда, когда ни одна из ее строк не содержит в любом своем поле более одного значения и ни одно из ее ключевых полей не пусто. |
Из таблиц, рассмотренных в п. 4, не удовлетворяет этим требованиям (т.е. не находится в 1НФ) только таблица рис. 4.1.
Таблица находится во второй нормальной форме (2НФ), если она удовлетворяет определению 1НФ и все ее поля, не входящие в первичный ключ, связаны полной функциональной зависимостью с первичным ключом. |
Кроме таблицы рис. 4.1 не удовлетворяет этим требованиям только таблица 4.2.
Как обосновано ниже (пример 4.2) она имеет составной первичный ключ
Блюдо, Дата_Р, Продукт, Поставщик, Город, Дата_П
и содержит множество неключевых полей (Вид, Рецепт, Порций, Калорийность и т.д.), зависящих лишь от той или иной части первичного ключа. Так поля Вид и Рецепт зависят только от поля Блюдо, Калорийность – от поля Продукт и т.п. Следовательно, эти поля не связаны с первичным ключом полной функциональной зависимостью.
Ко второй нормальной форме приведены почти все таблицы рис. 4.3 кроме таблицы Поставщики, в которой Страна зависит только от поля Город, который является частью первичного ключа (Поставщик, Город). Последнее обстоятельство приводит к проблемам при:
Разбивая эту таблицу на две таблицы Поставщики и Города (рис. 3.2), можно исключить указанные аномалии.
Что же касается таблиц рис. 4.4, то ввод в них отсутствующих в предметной области цифровых первичных и внешних ключей формально затрудняет процедуру выявления функциональных связей между этими ключами и остальными полями. Действительно, легко установить связь между атрибутом Блюдо и Вид (блюда): Харчо – Суп, Лобио – Закуска и т.п., но нет прямой зависимости между полями БЛ и Вид (блюда), если не помнить, что значение БЛ соответствует номеру блюда.
Для упрощения нормализации подобных таблиц целесообразно использовать следующую рекомендацию.
Рекомендация. При проведении нормализации таблиц, в которые введены цифровые (или другие) заменители составных и (или) текстовых первичных и внешних ключей, следует хотя бы мысленно подменять их на исходные ключи, а после окончания нормализации снова восстанавливать. |
При использовании этой рекомендации таблицы рис. 4.4 временно превращаются в таблицы рис. 4.3, а после выполнения нормализации и восстановления полей БЛ, ПР и ПОС – в нормализованные таблицы рис. 3.2.
Таблица находится в третьей нормальной форме (3НФ), если она удовлетворяет определению 2НФ и не одно из ее неключевых полей не зависит функционально от любого другого неключевого поля. |
После разделения таблицы Поставщики рис. 4.3 на две части все таблицы этого проекта удовлетворяют определению 2НФ, а так как в них нет неключевых полей, функционально зависящих друг от друга, то все они находятся в 3НФ.
Как ни странно, этого нельзя сказать об аналогичных таблицах рис 4.4. Если забыть рекомендацию о подмене на время нормализации ключей БЛ, ПР и ПОС на Блюдо, Продукт и (Поставщик, Город), то среди этих таблиц появятся две, не удовлетворяющие определению 3НФ. Действительно, так как после ввода первичных ключей БЛ и ПР поля Блюдо и Продукт стали неключевыми – появились несуществовавшие ранее функциональные зависимости между неключевыми полями:
Блюдо->Вид и Продукт->Калорийность.
Следовательно, для приведения таблиц Блюда и Продукты рис. 4.4 к 3НФ их надо разбить на
Блюда(БЛ, Блюдо),
Вид_блюда(БЛ, Вид);
Продукты(ПР, Продукт);
Калор_прод(ПР,Калорийносить),
хотя интуиция подсказывает, что это лишнее разбиение, совсем не улучшающее проекта базы данных.
Столкнувшись с подобными
Таблица находится в нормальной форме Бойса-Кодда (НФБК), если и только если любая функциональная зависимость между его полями сводится к полной функциональной зависимости от возможного ключа. |
В соответствие с этой формулировкой таблицы Блюда и Продукты рис. 4.4, имеющие по паре возможных ключей (БЛ и Блюдо) и (ПР и Продукт) находятся в НФБК или в 3НФ.
В следующих нормальных формах (4НФ и 5НФ) учитываются не только функциональные, но и многозначные зависимости между полями таблицы. Для их описания познакомимся с понятием полной декомпозиции таблицы.
Полной декомпозицией таблицы называют такую совокупность произвольного числа ее проекций, соединение которых полностью совпадает с содержимым таблицы. |
Например, естественным соединением (см. п. 3.3) таблиц рис. 4.3 можно образовать исходную таблицу, приведенную на рис. 4.2. Ту же таблицу можно получить композицией таблиц рис. 3.2. Следовательно, таблицы рис. 4.3, 4.4 и 3.2 являются полными декомпозициями таблицы Питание рис. 4.2.
Информация о работе Основы проектирования реляционных баз данных