Автор: Пользователь скрыл имя, 25 Мая 2015 в 14:42, реферат
Вопрос хранения и обработки больших объемов информации стоял перед человечеством с древнейших времен. Первые архивы возникли, как только социальное устройство общества усложнилось, увеличилось количество межличностных связей, тут же потребовалось их фиксировать на достаточно долгий срок. Вторая необходимость -создание единых законов для всего общества и практики их применения. Таким образом, видны два направления в информационном обеспечении - частный и общественный интерес. Архивы существовали уже в государствах Древнего Востока - в Египте, Вавилонии (Вавилоне), Ассирии.
Введение и историческая часть 1
1. Понятие и виды информационных систем 10
2. Специфика информационных программных систем 16
3. Задачи, решаемые информационными системами .18
4. Проблемы построения ИС 28
5. Требования к техническим средствам, поддерживающим ИС 18-27
Заключение 38
Список литературы 40
Кроме тех функций информационной системы, которые требуют выборки данных из внешнего хранилища, например, производят отчеты. Однако рассмотрим информационные системы с другой стороны.
Если говорить о групповых или корпоративных информационных системах, то их наличие предполагает возможность работы с системой с нескольких рабочих мест. Некоторые из конечных пользователей изменяют содержимое базы данных (вводят, обновляют, удаляют данные). Другие выполняют операции, связанные с выборкой из базы данных. Третьи делают и то и другое. Вся проблема состоит в том, что такая коллективная работа должна производиться согласованно, и желательно, чтобы согласованность действий обеспечивалась автоматически. Под согласованностью действий мы понимаем то, что оператор, формирующий отчеты, не сможет воспользоваться данными, которые начал, но еще не закончил формировать другой оператор. Оператор, формирующий данные, не сможет выполнить операцию над данными, которыми пользуется другой оператор, начавший, но не закончивший формировать отчет. Оператор, желающий обновить или удалить данные, не сможет выполнить операцию до тех пор, пока не закончится аналогичная операция над теми же данными, которую ранее начал, но еще не закончил другой оператор. При поддержке согласованности действий все результаты, получаемые от информационной системы, будут соответствовать согласованному состоянию базы данных, т. е. будут достоверны и непротиворечивы.
Подобные рассуждения привели к возникновению понятия классической транзакции. Будем понимать под целостным состоянием базы данных информационной системы такое ее состояние, которое соответствует требованиям прикладной области (или, вернее, требованиям модели прикладной области, на основе которой проектировалась информационная система). Тогда классической транзакцией называется последовательность операций изменения базы данных и/или выборки из базы данных, воспринимаемая СУБД как атомарное действие. Это означает, что при успешном завершении транзакции СУБД гарантирует наличие в базе данных результатов всех операций изменения, произведенных при выполнении транзакции. Условием успешного завершения транзакции является то, что база данных находится в целостном состоянии. Если это условие не выполняется, то СУБД производит полный откат транзакции, ликвидируя в базе данных результаты всех операций изменения, произведенных при выполнении транзакции. Тем самым легко увидеть, что база данных будет находиться в целостном состоянии при начале любой транзакции и останется в целостном состоянии после успешного завершения любой транзакции.
Все развитые СУБД поддерживают понятие транзакции. Если информационная система базируется на СУБД такого класса, то для обеспечения согласованности действий параллельно работающих конечных пользователей достаточно при проектировании системы правильно связать операции информационной системы с транзакциями СУБД. Это относится уже к области проектирования информационных систем.
Еще одно небольшое замечание относительно транзакций. СУБД может очень просто обрабатывать транзакции, выполняя их последовательно. Этого достаточно, чтобы обеспечить согласованность действий «параллельно» работающих операторов. Но реальной параллельности в этом случае, конечно, не будет. СУБД выстроит всех пользователей в общую очередь и будет пропускать по одному, даже если они вовсе не конфликтуют по данным. Развитые СУБД так не работают. Они стремятся максимально перемешивать запросы и операторы изменения базы данных, поступающие от разных транзакций, с тем лишь условием, что конечный результат выполнения всего набора транзакций будет эквивалентен результату их некоторого последовательного выполнения. В мире баз данных такая политика СУБД называется политикой полной сериализации смеси транзакций. Очевидно, что полная сериализация транзакций достаточна для достижения согласованности действий теперь уже действительно параллельной работы операторов информационной системы. Но полная сериализация транзакций не всегда является необходимой для требуемой согласованности действий. Существуют модели ослабленной сериализации, которая допускает еще большую параллельность и вызывает меньшие накладные расходы.
На первый взгляд кажется, что понятие транзакции чуждо персональным СУБД, с которыми в любой момент времени работает только один пользователь. Однако рассмотрим еще раз упоминавшуюся задачу надежного хранения данных. Что это означает более конкретно? Теперь, после того как мы ввели понятия целостного состояния базы данных и транзакции, под надежностью хранения данных мы понимаем гарантию того, что последнее по времени целостное состояние базы данных будет сохранено СУБД при любых обстоятельствах. Одно такое возможное обстоятельство мы уже упоминали: нарушение целостности базы данных при окончании транзакции.
Таким образом, основное условие жизнеспособности ИС – это поддержание целостности и достоверности ее данных.
Чтобы обеспечить целостность данных в случае различных сбоев существуют два основных решения.
Традиционное решение - откат всех транзакций, которые не завершились к моменту аварии, и гарантированная запись во внешней памяти результатов завершившихся транзакций. Естественно, это можно сделать только после возобновления подачи питания в ходе специальной процедуры восстановления. Наконец, третий случай - авария внешнего носителя базы данных. Традиционное решение - переписать на исправный внешний носитель архивную копию базы данных (конечно, нужно ее иметь), после чего повторить операции всех транзакций, которые были выполнены после архивации, а затем выполнить откат всех транзакций, не закончившихся к моменту аварии. С разными модификациями развитые СУБД обеспечивают решение этих проблем за счет поддержки дополнительного файла внешней памяти - журнала базы данных. В журнал помещаются записи, соответствующие каждой операции изменения базы данных, а также записи о начале и конце каждой транзакции. Файл журнала требует особой надежности хранения (пропадет журнал - базу данных не восстановишь), что обычно достигается путем поддержки зеркальной копии. Вернемся к началу этого абзаца. Разве надежность хранения данных не нужна персональным информационным системам, если, конечно, они не совсем примитивны? Как мы видели, надежности хранения невозможно добиться, если не поддерживать в СУБД понятие транзакции. К сожалению, до последнего времени в большинстве персональных СУБД транзакции не поддерживались (само собой отсутствовали и средства определения и поддержки целостности баз данных). Поэтому о надежности хранения информации в информационных системах, основанных на персональных СУБД, можно говорить только условно.
В корпоративных информационных системах по естественным причинам часто возникает потребность в распределенном хранении общей базы данных. Например, разумно хранить некоторую часть информации как можно ближе к тем рабочим местам, в которых она чаще всего используется. По этой причине при построении информационной системы приходится решать задачу согласованного управления распределенной базой данных (иногда применяя методы репликации данных). При однородном построении распределенной базы данных (на основе однотипных серверов баз данных) эту задачу обычно удается решить на уровне СУБД (большинство производителей развитых СУБД поддерживает средства управления распределенными базами данных). Если же система разнородна (т. е. для управления отдельными частями распределенной базы данных используются разные серверы), то приходится прибегать к использованию вспомогательных инструментальных средств интеграции разнородных баз данных типа мониторов транзакций.
Традиционным методом организации информационных систем является двухзвенная архитектура клиент-сервер (рис. 1). В этом случае вся прикладная часть информационной системы выполняется на рабочих станциях (т. е. дублируется), а на стороне сервера(ов) осуществляется только доступ к базе данных. Если логика прикладной части системы достаточно сложна, то такой подход порождает проблему "толстого" клиента. Каждая рабочая станция должна обладать достаточным набором ресурсов, чтобы быть в состоянии произвести прикладную обработку данных, поступающих от пользователя и/или из базы данных. Для того чтобы клиенты могли быть тонкими, а зачастую и для повышения общей эффективности системы все чаще применяются трехзвенные архитектуры клиент-сервер (рис. 2). В этой архитектуре кроме клиентской части системы и сервера(ов) базы данных вводится промежуточный сервер приложений. На стороне клиента выполняются только интерфейсные действия, а вся логика обработки информации поддерживается в сервере приложений.
Заметим, что некоторые черты трехзвенности могут присутствовать и в двухзвенной архитектуре. Если, например, используемый сервер баз данных поддерживает развитый механизм хранимых процедур (например, такой, как в Oracle V.7), то можно перебросить некоторую часть логики приложения на сторону баз данных. Заметим, что механизм хранимых процедур недостаточно полно специфицирован в текущем стандарте языка SQL. Как только вы решаетесь использовать действительно развитые средства, то немедленно привязываете свою информационную систему к конкретному производителю серверов баз данных. Развязаться будет очень трудно.
И, наконец, еще один класс задач относится к обеспечению удобного и соответствующего целям информационной системы пользовательского интерфейса. Более или менее просто выяснить функциональные компоненты интерфейса, например, какого вида должны предлагаться формы и какого вида должны выдаваться отчеты. Но построение действительно удобного и не утомительного для пользователя интерфейса - это задача дизайнера интерфейса. Простой аналог: при наличии полного набора качественной мебели хороший дизайнер сможет оформить красиво оформленную и удобную для жизни квартиру (все на месте и под рукой). Плохой же дизайнер, скорее всего, добьется лишь того, что сможет запихнуть в квартиру всю мебель, а потом хозяину квартиру все время будет казаться, что у него слишком много ненужной мебели и ничего невозможно найти. Нужно отдавать себе отчет в том, что задача эргономичности интерфейса не формализуется. При ее решении не помогут никакие средства автоматизации разработки интерфейса. Такие средства облегчают только построение компонентов интерфейса. Построение же полного интерфейса - это творческая задача, при решении которой нужно учитывать требования эстетичности и удобства, а также принимать во внимание особенности конкретной области применения информационной системы.
На первый взгляд упомянутая задача кажется не очень существенной. Можно полагать, что если информационная система обеспечивает полный набор функций и ее интерфейс обеспечивает доступ к любой из этих функций, то конечные пользователи должны быть удовлетворены. На самом деле это не так. Пользователи часто судят о качестве системы в целом, исходя из качества ее интерфейса. Более того, эффективность использования системы зависит от качества интерфейса. Поскольку, как отмечалось выше, задача построения эргономичного интерфейса не формализуется, мы больше не будем ее затрагивать.
Самой первой проблемой является проблема проектирования. Нельзя начинать техническую разработку, не имея тщательно проработанного проекта. Если начинать с решения наиболее очевидных задач, не обращая внимания на потенциально существующие, то такая система будет непрерывно находиться в стадии разработки и переделки.
Первой стадией проектирования должен быть анализ требований корпорации. Для этого на основе экспертных запросов необходимо выявить все актуальные и потенциальные потребности корпорации, которые должны удовлетворяться проектируемой информационной системой, понять, какие потоки данных существуют внутри корпорации, оценить объемы информации, которые должны поддерживаться и обрабатываться информационной системой. Эта стадия, как правило, носит неформальный характер, хотя, конечно, очень важно сохранить полученную информацию, поскольку она должна входить в документацию системы.
Следующая стадия проектирования - выработка концептуальной схемы базы данных, которая будет лежать в основе информационной системы. Концептуальное представление базы данных должно сохраняться как часть документации информационной системы на все время ее существования и будет использоваться при ее сопровождении и развитии.
Далее, с большой вероятностью в основе информационной системы будет лежать реляционнная база данных.
Реляционная база данных - тип базы данных и системы управления базой данных, в которой информация записана в таблицах (ряды и колонки данных), а для поиска данных в таблице используются данные из колонок другой таблицы. В реляционной базе данных ряды таблиц представляют собой записи (наборы информации об отдельном элементе), а колонки - поля (отдельные атрибуты записи). При проведении поиска Реляционная база данных связывает информацию поля одной таблицы с информацией в соответствующем поле другой таблицы для обработки третьей таблицы, в которой комбинируются запрошенные данные из обеих таблиц. Например, если одна таблица содержит поля ДОЛЖНОСТЬ, ФАМИЛИЯ, ИМЯ СТАЖ, а другая содержит поля ОТДЕЛ. ДОЛЖНОСТЬ и ЗАРПЛАТА, то реляционная база может связать оба поля ДОЛЖНОСТЬ в две таблицы, чтобы найти такую информацию, как имена всех служащих, имеющих определенный стаж, или отделы, в которые были приняты служащие после определенной даты. Другими словами, реляционная база данных использует согласующиеся значения в двух таблицах, чтобы установить отношение информации в одной таблице к информации в другой таблице.
Несмотря на очевидную привлекательность объектно-ориентированных и объектно-реляционных СУБД, в ближайшие годы придется работать с хорошо отлаженными, развитыми, сопровождаемыми системами, поддерживающими стандарт SQL-92 (например, Oracle, Informix, CA-OpenIngres, Sybase, DB2). Просто потому, что должно пройти время, чтобы системы новых типов устоялись, обрели необходимую надежность, стали бы опираться на какие-либо стандарты и т. д.
Поэтому с большой вероятностью на следующей стадии проектирования будет нужно на основе имеющейся концептуальной схемы произвести набор определений схемы реляционной базы данных в терминах языка SQL. К сожалению, несмотря на наличие стандарта языка, на этой стадии иногда невозможно не учитывать специфику сервера баз данных, который будет использоваться. Вы спросите, почему "к сожалению"? Да потому, что на самом деле мы еще не дошли до той стадии, когда конкретные особенности сервера действительно необходимо учитывать. В принципе, на данной стадии мы все еще находимся на уровне абстрактной реляционной модели. Но все дело в том, что когда производители серверов баз данных провозглашают соответствие своих серверных продуктов стандарту языка SQL-92, то в основном они понимают соответствие так называемому "ядру" стандарта. К сожалению, ядро стандарта не включает средств определения схемы базы данных. Поэтому диалекты SQL, реализуемые разными производителями, различаются в деталях соответствующих языковых средств. По этой причине необходимо внимательно изучить "целевой" диалект SQL, если трансляция концептуальной схемы в реляционную производится вручную (например, на основе методологии, предлагаемой компанией Oracle), или указать название используемого серверного продукта, если применяется продукто-независимое CASE-средство (например, Silverrun).
На этой же стадии необходимо решить, какие таблицы будут реально хранимыми, а какие - представляемыми (view).
После того как выработана общая реляционная схема базы данных, необходимо определиться с архитектурой системы. В частности, очень важно решить, какой будет база данных - централизованной или распределенной (другими словами, будет ли использоваться только один сервер баз данных или их будет несколько). Если принимается решение о распределенном характере базы данных, то необходимо произвести соответствующую декомпозицию набора определений схемы базы данных. (Заметим, что, вообще говоря, принятие решения об архитектуре системы возможно и до выработки общей реляционной схемы базы данных. Тогда декомпозиция производится на уровне концептуальной схемы, а затем для каждой отдельной части концептуальной схемы создается реляционная схема в терминах языка SQL.)
Информация о работе Описание информационных систем, история зарождения и становления