Автор: Пользователь скрыл имя, 09 Января 2012 в 10:43, реферат
Цель работы:
рассмотреть методы и средства защиты информации от утечки по техническим каналам.
Поставленная цель раскрывается через решение следующих задач:
дать классификацию и краткую характеристику технических каналов утечки информации;
дать классификацию и краткую характеристику методам и средствам защиты информации, обрабатываемой техническими средствами приема, обработки, хранения и передачи информации (ТСПИ), от утечки по техническим каналам.
Введение 3
Классификация и краткая характеристика технических каналов утечки информации. 4
Классификация методов и средств защиты информации от утечки по техническим каналам. 8
Методы и средства защиты информации, обрабатываемой ТСПИ, от утечки по техническим каналам. 12
Экранирование технических средств
13
Заземление технических средств.
18
Фильтрация информационных сигналов.
22
Пространственное и линейное зашумление.
24
Заключение 27
Приложение
28
Список литературы
При экранировании магнитного поля заземление экрана не изменяет величины возбуждаемых в экране токов и, следовательно, на эффективность магнитного экранирования не влияет.
На высоких частотах применяется исключительно электромагнитное экранирование. Действие электромагнитного экрана основано на том, что высокочастотное электромагнитное поле ослабляется им же созданным (благодаря образующимся в толще экрана вихревым токам) полем обратного направления.
Экранироваться могут не только отдельные блоки (узлы) аппаратуры и их соединительные линии, но и помещения в целом.
В обычных (неэкранированных) помещениях основной экранирующий эффект обеспечивают железобетонные стены домов. Экранирующие свойства дверей и окон хуже. Для повышения экранирующих свойств стен применяются дополнительные средства, в том числе:
- токопроводящие
лакокрасочные покрытия или
- шторы из металлизированной ткани;
- металлизированные
стекла (например, из двуокиси олова),
устанавливаемые в
В помещении экранируются стены, двери и окна.
Теория и практика показывают, что с точки зрения стоимости материала и простоты изготовления преимущества на стороне экранированного помещения из листовой стали. Однако при применении сетчатого экрана могут значительно упроститься вопросы вентиляции и освещения помещения. В связи с этим сетчатые экраны также находят широкое применение.
Необходимо помнить, что экранирование ТСПИ и соединительных линий эффективно только при правильном их заземлении. Поэтому одним из важнейших условий по защите ТСПИ является правильное заземление этих устройств.
В настоящее время существуют различные типы заземлений. Наиболее часто используются одноточечные, многоточечные и комбинированные (гибридные) схемы.
Одноточечная последовательная схема заземления.
Эта схема
наиболее проста. Однако ей присущ недостаток,
связанный с протеканием обратных
токов различных цепей по общему участку
заземляющей цепи. Вследствие этого возможно
появление опасного сигнала в посторонних
цепях.
Рис. 1 Одноточечная последовательная схема заземления.
Одноточечная параллельная схема
В одноточечной параллельной схеме заземления нет недостатка присущего одноточечной последовательной схеме. Однако такая схема требует большого числа протяженных заземляющих проводников, из-за чего может возникнуть проблема с обеспечением малого сопротивления заземления участков цепи.
Кроме того, между
заземляющими проводниками могут возникать
нежелательные связи, которые создают
несколько путей заземления для каждого
устройства. В результате в системе заземления
могут возникнуть уравнительные токи
и появиться разность потенциалов между
различными устройствами.
Рис. 2 Одноточечная параллельная схема заземления
Многоточечная схема заземления
Многоточечная
схема заземления практически свободна
от недостатков, присущих одноточечной
схеме. В этом случае отдельные устройства
и участки корпуса индивидуально заземлены.
При проектировании и реализации многоточечной
системы заземления необходимо принимать
специальные меры для исключения замкнутых
контуров.
Рис. 3 Многоточечная схема заземления
Как правило, одноточечное заземление применяется на низких частотах при небольших размерах заземляемых устройств и расстояниях между ними менее 0,5хλ.
На высоких частотах при больших размерах заземляемых устройств и значительных расстояниях между ними используется многоточечная система заземления. В промежуточных случаях эффективна комбинированная (гибридная) система заземления, представляющая собой различные сочетания одноточечной, многоточечной и плавающей заземляющих систем [128].
Заземление технических средств систем информатизации и связи должно быть выполнено в соответствии с определенными правилами.
Основные требования, предъявляемые к системе заземления, заключаются в следующем:
Сопротивление заземления определяется главным образом сопротивлением растекания тока в земле. Величину этого сопротивления можно значительно понизить за счет уменьшения переходного сопротивления между заземлителем и почвой путем тщательной очистки перед укладкой поверхности заземлителя и утрамбовкой вокруг него почвы, а также подсыпкой поваренной соли.
Таким образом, величина сопротивления заземления будет в основном определяться сопротивлением грунта.
Удельное
сопротивление различных
Одним из методов локализации опасных сигналов, циркулирующих в технических средствах и системах обработки информации, является фильтрация. В источниках электромагнитных полей и наводок фильтрация осуществляется с целью предотвращения распространения нежелательных электромагнитных колебаний за пределы устройства - источника опасного сигнала. Фильтрация в устройствах - рецепторах электромагнитных полей и наводок должна исключить их воздействие на рецептор.
Для фильтрации сигналов в цепях питания ТСПИ используются разделительные трансформаторы и помехоподавляющие фильтры.
Разделительные трансформаторы. Такие трансформаторы должны обеспечивать развязку первичной и вторичной цепей по сигналам наводки. Это означает, что во вторичную цепь трансформатора не должны проникать наводки, появляющиеся в цепи первичной обмотки. Проникновение наводок во вторичную обмотку объясняется наличием нежелательных резистивных и емкостных цепей связи между обмотками.
Для
уменьшения связи обмоток по сигналам
наводок часто применяется
Разделительные трансформаторы используются с целью решения ряда задач, в том числе для:
Средства развязки и экранирования, применяемые в разделительных трансформаторах, обеспечивают максимальное значение сопротивления между обмотками и создают для наводок путь с малым сопротивлением из первичной обмотки на землю.
Помехоподавляющие фильтры. В настоящее время существует большое количество различных типов фильтров, обеспечивающих ослабление нежелательных сигналов в разных участках частотного диапазона. Это фильтры нижних и верхних частот, полосовые и заграждающие фильтры и т.д.. Основное назначение фильтров - пропускать без значительного ослабления сигналы с частотами, лежащими в рабочей полосе частот, и подавлять (ослаблять) сигналы с частотами, лежащими за пределами этой полосы.
Для исключения просачивания информационных сигналов в цепи электропитания используются фильтры нижних частот.
Фильтр нижних частот (ФНЧ) пропускает сигналы с частотами ниже граничной частоты (f < fгр) и подавляет- с частотами выше граничной частоты.
Последовательная ветвь ФНЧ должна иметь малое сопротивление для постоянного тока и нижних частот. Вместе с тем для того, чтобы высшие частоты задерживались фильтром, последовательное сопротивление должно расти с частотой. Этим требованиям удовлетворяет индуктивность L.
Параллельная ветвь ФНЧ, наоборот, должна иметь малую проводимость для низких частот с тем, чтобы токи этих частот не шунтировались параллельным плечом. Для высоких частот параллельная ветвь должна иметь большую проводимость, тогда колебания этих частот будут ею шунтироваться, и их ток на выходе фильтра будет ослабляться. Таким требованиям отвечает емкость С.
Более сложные многозвенные ФНЧ (Чебышева, Баттерворта, Бесселя и т.д.) конструируют на основе сочетаний различных единичных звеньев.
Основные требования, предъявляемые к защитным фильтрам, заключаются в следующем:
Реализация пассивных методов защиты, основанных на применении экранирования и фильтрации, приводит к ослаблению уровней побочных электромагнитных излучений и наводок (опасных сигналов) ТСПИ и тем самым к уменьшению отношения опасный сигнал/шум (с/ш). Однако в ряде случаев, несмотря на применение пассивных методов защиты, на границе контролируемой зоны отношение с/ш превышает допустимое значение. В этом случае применяются активные меры защиты, основанные на создании помех средствам разведки, что также приводит к уменьшению отношения с/ш.
Для исключения перехвата побочных электромагнитных излучений по электромагнитному каналу используется пространственное зашумление, а для исключения съема наводок информационных сигналов с посторонних проводников и соединительных линий ВТСС - линейное зашумление.
К системе пространственного зашумления, применяемой для создания маскирующих электромагнитных помех, предъявляются следующие требования:
Цель пространственного зашумления считается достигнутой, если отношение опасный сигнал/шум на границе контролируемой зоны не превышает некоторого допустимого значения, рассчитываемого по специальным методикам для каждой частоты информационного (опасного) побочного электромагнитного излучения ТСПИ.
В системах пространственного зашумления в основном используются помехи типа "белого шума" или "синфазные помехи".
Системы, реализующие метод "синфазной помехи", в основном применяются для защиты ПЭВМ. В них в качестве помехового сигнала используются импульсы случайной амплитуды, совпадающие (синхронизированные) по форме и времени существования с импульсами полезного сигнала. Вследствие этого по своему спектральному составу помеховый сигнал аналогичен спектру побочных электромагнитных излучений ПЭВМ. То есть, система зашумления генерирует "имитационную помеху", по спектральному составу соответствующую скрываемому сигналу.
Информация о работе Методы и средства защиты информации от утечки по техническим каналам