Автор: Пользователь скрыл имя, 27 Ноября 2011 в 17:57, доклад
С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.
yэ(3) = – 42°, yэ(4) = 0°, yэ(5) = 28°, yэ(6) = 69°.
Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид
y » an + b,
где a, b — константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:
– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.
Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:
b » – 42 – 3a, b » – 4a, b » 28 – 5a, b » 69 – 6a.
Возьмем в качестве
искомого b среднее арифметическое
этих значений, то есть положим b » 16
– 4,5a. Подставим в исходную систему
уравнений это значение b и, вычисляя a,
получим для a следующие значения: a»37, a»28, a»28, a»
y » 34n – 139.
Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:
yр(3) = – 37°, yр(4) = – 3°, yр(5) = 31°, yр(6) = 65°.
Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: yр(7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения yэ(7) = 98°.
7) Задача об определении надежности электрической цепи.
Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей — математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A1, ..., Ak образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A1, ..., Ak образуют полную группу несовместимых событий, то P(A1)+...+P(Ak)=1.
Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события Ai ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(Ai) = (i = 1, ..., 6).
Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы
P(AB) = P(A)•P(B), P(A + B) = P(A) + P(B).
8) Рассмотрим теперь следующую задачу. Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P1 = 0,1, P2 = 0,15, P3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.
Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть Ai — событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A1A2A3 — событие, заключающееся в том, что одновременно работают все три элемента, и
P(A1A2A3) = P(A1)•P(A2)•P(A3) = 0,612.
Тогда P(A) + P(A1A2A3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.
В заключение отметим,
что приведенные примеры