Краткая история развития вычислительной техники

Автор: Пользователь скрыл имя, 22 Февраля 2013 в 06:19, реферат

Краткое описание

С развитием точных наук появилась настоятельная необходи¬мость в проведении большого количества точных вычислений. В 1642 г. французский математик Блез Паскаль сконструировал первую механическую счетную машину, известную как суммиру¬ющая машина Паскаля (рис. 1.1). Эта машина представляла собой комбинацию взаимосвязанных колесиков и приводов. На колеси¬ках были нанесены цифры от 0 до 9. Когда первое колесико (еди¬ницы) делало полный оборот, в действие автоматически приво¬дилось второе колесико (десятки); когда и оно достигало цифры 9, начинало вращаться третье колесико и т.д. Машина Паскаля могла только складывать и вычитать.

Файлы: 1 файл

1.doc

— 132.50 Кб (Скачать)

КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ 
С развитием точных наук появилась настоятельная необходимость в проведении большого количества точных вычислений. В 1642 г. французский математик Блез Паскаль сконструировал первую механическую счетную машину, известную как суммирующая машина Паскаля (рис. 1.1). Эта машина представляла собой комбинацию взаимосвязанных колесиков и приводов. На колесиках были нанесены цифры от 0 до 9. Когда первое колесико (единицы) делало полный оборот, в действие автоматически приводилось второе колесико (десятки); когда и оно достигало цифры 9, начинало вращаться третье колесико и т.д. Машина Паскаля могла только складывать и вычитать. 
 
В 1694 г. немецкий математик Готфрид Вильгельм фон Лейбниц сконструировал более совершенную счетную машину (рис. 1.2). Он был убежден, что его изобретение найдет широкое применение не только в науке, но и в быту. В отличие от машины Паскаля Лейбниц использовал цилиндры, а не колесики и приводы. На цилиндры были нанесены цифры. Каждый цилиндр имел девять рядов выступов или зубцов. При этом первый ряд содержал 1 выступ, второй - 2 и так вплоть до девятого ряда, который содержал 9 выступов. Цилиндры были подвижными и приводились в определенное положение оператором. Конструкция машины Лейбница была более совершенной: она была способна выполнять не только сложение и вычитание, но и умножение, деление и даже извлечение квадратного корня. 
 
Интересно, что потомки этой конструкции дожили до 70-х годов XX в. в форме механических калькуляторов (арифмометр типа «Феликс») и широко использовались для различных расчетов (рис. 1.3). Однако уже в конце XIX в. с изобретением электромагнитного реле появились первые электромеханические счетные устройства. В 1887 г. Герман Голлерит (США) изобрел электромеханический табулятор с вводом чисел с помощью перфокарт. На идею использовать перфокарты его натолкнула пробивка компостером проездных билетов на железнодорожном транспорте. Разработанная им 80-колонная перфокарта не претерпела существенных изменений и в качестве носителя информации использовалась в первых трех поколениях компьютеров. Табуляторы Голлерита использовались во время 1-й переписи населения в России в 1897 г. Сам изобретатель тогда специально приезжал в Санкт-Петербург. С этого времени электромеханические табуляторы и другие подобные им устройства стали широко применяться в бухгалтерском учете.  
 
В начале XIX в. Чарльз Бэббидж сформулировал основные положения, которые должны лежать в основе конструкции вычислительной машины принципиально нового типа. 
 
В такой машине, по его мнению, должны быть «склад» для хранения цифровой информации, специальное устройство, осуществляющее операции над числами, взятыми со «склада». Бэббидж называл такое устройство «мельницей». Другое устройство служит для управления последовательностью выполнения операций, передачей чисел со «склада» на «мельницу» и обратно, наконец, в машине должно быть устройство для ввода исходных данных и вывода результатов вычислений. Эта машина так никогда и не была построена - существовали лишь ее модели (рис. 1.4), но принципы, положенные в ее основу, были позже реализованы в цифровых ЭВМ. 
 
Научные идеи Бэббиджа увлекли дочь известного английского поэта лорда Байрона - графиню Аду Августу Лавлейс. Она заложила первые фундаментальные идеи о взаимодействии различных блоков вычислительной машины и последовательности решения на ней задач. Поэтому Аду Лавлейс по праву считают первым в мире программистом. Многими понятиями, введенными Адой Лавлейс в описания первых в мире программ, широко пользуются современные программисты. 
 
 Рис. 1.1. Суммирующая машина Паскаля 
 Рис. 1.2. Счетная машина Лейбница 
 
 
 
  
Рис. 1.3. Арифмометр «Феликс» 
 
 
 
 Рис. 1.4. Машина Бэббиджа 
 
 
Началом новой эры развития вычислительной техники на базе электромеханических реле стал 1934 г. Американская фирма IBM (International Buisness Machins) начала выпуск алфавитно-цифровых табуляторов, способных выполнять операции умножения. В середине 30-х годов XX в. на основе табуляторов создается прообраз первой локальной вычислительной сети. В Питсбурге (США) в универмаге была установлена система, состоящая из 250 терминалов, соединенных телефонными линиями с 20 табуляторами и 15 пишущими машинками для расчетов с покупателями. В 1934 - 1936 гг. немецкий инженер Конрад Цузе пришел к идее создания универсальной вычислительной машины с программным управлением и хранением информации в запоминающем устройстве. Он сконструировал машину «Z-3» - это была первая программно-управляемая вычислительная машина – прообраз современных ЭВМ (рис. 1.5). 
 
 
 
 
Рис. 1.5. Вычислительная машина Цузе 
 
 
Это была релейная машина, использующая двоичную систему счисления, имеющая память на 64 числа с плавающей запятой. В арифметическом блоке пользовалась параллельная арифметика. Команда включала операционную и адресную части. Ввод данных осуществлялся с помощью десятичной клавиатуры, был предусмотрен цифровой вывод, а также автоматическое преобразование десятичных чисел в двоичные и обратно. Скорость выполнения операции сложения - три операции в секунду. 
 
В начале 40-х годов XX в. в лабораториях IBM совместно с учеными Гарвардского университета была начата разработка одной из самых мощных электромеханических вычислительных машин. Она получила название MARK-1, содержала 760 тыс. компонентов и весила 5 т (рис. 1.6). 
 
 
Рис. 1.6. Вычислительная машина  
MARK 
-1 
 
Последним наиболее крупным проектом в сфере релейной вычислительной техники (ВТ) следует считать построенную в 1957 г. в СССР РВМ-1, которая по целому ряду задач была вполне конкурентоспособна тогдашним ЭВМ. Тем не менее с появлением электронной лампы дни электромеханических устройств оставались сочтены. Электронные компоненты обладали большим превосходством в быстродействии и надежности, что и определило дальнейшую судьбу электромеханических вычислительных машин. Наступила эра электронных вычислительных машин. 
 
Переход к следующему этапу развития средств вычислительной техники и технологии программирования был бы невозможен без основополагающих научных исследований в области передачи и обработки информации. Развитие теории информации связано прежде всего с именем Клода Шеннона. Отцом кибернетики по праву считается Норберт Винер, а создателем теории автоматов является Генрих фон Нейман. 
 
Концепция кибернетики родилась из синтеза многих научных направлений: во-первых, как общий подход к описанию и анализу действий живых организмов и вычислительных машин или иных автоматов; во-вторых, из аналогий между поведением сообществ живых организмов и человеческого общества и возможностью их описания с помощью общей теории управления; и, наконец, из синтеза теории передачи информации и статистической физики, который привел к важнейшему открытию, связывающему количество информации и отрицательную энтропию в системе. Сам термин «кибернетика» происходит от греческого слова, означающего «кормчий», он впервые был применен Н.Винером в современном смысле в 1947 г. Книга Н.Винера, в которой он сформулировал основные принципы кибернетики, называется «Кибернетика или управление и связь в животном и машине». 
 
Клод Шеннон - американский инженер и математик, человек, которого называют отцом современной теорий информации. Он доказал, что работу переключателей и реле в электрических схемах можно представить посредством алгебры, изобретенной в середине XIX в. английским математиком Джорджем Булем. С тех пор булева алгебра стала основой для анализа логической структуры систем любого уровня сложности. 
 
Шеннон доказал, что всякий зашумленный канал связи характеризуется предельной скоростью передачи информации, называемой пределом Шеннона. При скоростях передачи выше этого предела неизбежны ошибки в передаваемой информации. Однако с помощью соответствующих методов кодирования информации можно получить сколь угодно малую вероятность ошибки при любой зашумленности канала. Его исследования явились фундаментом для разработки систем передачи информации по линиям связи. 
 
В 1946 г. блестящий американский математик венгерского происхождения Генрих фон Нейман сформулировал основную концепцию хранения команд компьютера в его собственной внутренней памяти, что послужило огромным толчком к развитию электронно-вычислительной техники. 
 
Во время Второй мировой войны он служил консультантом в атомном центре в Лос-Аламосе, где занимался расчетами взрывной детонации ядерной бомбы и участвовал в разработке водородной бомбы. 
 
Нейману принадлежат работы, связанные с логической организацией компьютеров, проблемами функционирования машинной памяти, самовоспроизводящихся систем и др. Он принимал участие в создании первой электронной вычислительной машины ENIAC, предложенная им архитектура компьютера была положена в основу всех последующих моделей и до сих пор так и называется - «фон-неймановской». 
 
I поколение компьютеров. В 1946 г. в США были закончены работы по созданию ENIAC - первой вычислительной машины на электронных компонентах (рис. 1.7). 
 
 
Рис. 1.7. Первая ЭВМ   
ENIAC 
 
 
 
Новая машина имела впечатляющие параметры: в ней использовалось 18 тыс. электронных ламп, она занимала помещение площадью 300 м2, имела массу 30 т, энергопотребление - 150 кВт. Машина работала с тактовой частотой 100 кГц и выполняла операцию сложения за 0,2 мс, а умножения - за 2,8 мс, что было на три порядка быстрее, чем это могли делать релейные машины. Быстро обнаружились и недостатки новой машины. По своей структуре ЭВМ ENIAC напоминала механические вычислительные машины: использовалась десятичная система; программа набиралась вручную на 40 наборных полях; на перенастройку коммутационных полей уходили недели. При пробной эксплуатации выяснилось, что надежность этой машины очень низка: поиск неисправностей занимал до нескольких суток. Для ввода и вывода данных использовались перфоленты и перфокарты, магнитные ленты и печатающие устройства. В компьютерах I поколения была реализована концепция хранимой программы. Компьютеры I поколения использовались для прогнозирования погоды, решения энергетических задач, задач военного характера и в других важных областях. 
 
II поколение компьютеров. Одним из самых важных достижений, которые привели к революции в конструировании ЭВМ и в конечном счете к созданию персональных компьютеров, было изобретение транзистора в 1948 г. Транзистор, который является твердотельным электронным переключательным элементом (вентилем), занимает гораздо меньше места и потребляет значительно меньше энергии, выполняя ту же работу, что и лампа. Вычислительные системы, построенные на транзисторах, были намного компактнее, экономичнее и гораздо эффективней ламповых. Переход на транзисторы положил начало миниатюризации, которая сделала возможным появление современных персональных ЭВМ (как, впрочем, и других радиотехнических устройств - радиоприемников, магнитофонов, телевизоров и т.д.). Для машин II поколения встала задача автоматизации программирования, поскольку увеличивался разрыв между временем на разработку программ и непосредственно временем счета. Второй этап развития вычислительной техники конца 50-х - начала 60-х годов XX в. характеризуется созданием развитых языков программирования (алгол, фортран, кобол) и освоением процесса автоматизации управления потоком задач с помощью самой ЭВМ, т.е. разработкой операционных систем. 
 
В 1959 г. IBM выпустила коммерческую машину на транзисторах IBM 1401. Она была поставлена более чем в 10 тыс. экземплярах. В том же году IBM создала свой первый большой компьютер (мэйнфрейм) модели IBM 7090, полностью выполненный на базе транзисторов, с быстродействием 229 тыс. операций в секунду, а в 1961 г. разработала модель IBM 7030 для ядерной лаборатории США в Лос-Аламосе. 
 
Ярким представителем отечественных ЭВМ II поколения стала большая электронная суммирующая машина БЭСМ-6, разработанная С.А. Лебедевым и его коллегами (рис. 1.8). Для компьютеров этого поколения характерно использование языков программирования высокого уровня, которые получили свое развитие в компьютерах следующего поколения. Транзисторные машины II поколения заняли всего лишь пять лет в биографии ЭВМ. 
 
 Рис. 1.8. БЭСМ-6 
 
III поколение компьютеров. В 1959 г. инженеры фирмы Texas Instruments разработали способ размещения нескольких транзисторов и других элементов на одной основе (или подложке) и соединения этих транзисторов без использования проводников. Так родилась интегральная схема (ИС, или чип). Первая интегральная схема содержала всего шесть транзисторов. Теперь компьютеры проектировались на основе интегральных схем малой степени интеграции. Появились операционные системы, которые стали брать на себя задачи управления памятью, устройствами ввода-вывода и другими ресурсами. 
 
В апреле 1964 г. IBM анонсировала System 360 - первое семейство универсальных программно-совместимых компьютеров и периферийного оборудования. Элементной базой семейства System 360 были выбраны гибридные микросхемы, благодаря чему новые модели стали считать машинами III поколения (рис. 1.9).  
 
 
Рис. 1.9. ЭВМ III поколения  
IBM 
 
 
При создании семейства System 360 IBM в последний раз позволила себе роскошь выпускать компьютеры, несовместимые с предыдущими. Экономичность, универсальность и небольшие габариты компьютеров этого поколения быстро расширила сферу их применения - управление, передача данных, автоматизация научных экспериментов и т. д. В рамках этого поколения в 1971 г. был разработан первый микропроцессор как неожиданный результат работы фирмы Intel над созданием микрокалькуляторов. (Заметим, кстати, что микрокалькуляторы и в наше время прекрасно уживаются со своими «братьями по крови» - персональными компьютерами.) 
 
IV поколение компьютеров. Этот этап в развитии вычислительной техники связан с разработкой больших и сверхбольших интегральных микросхем. В компьютерах IV поколения стали использоваться быстродействующие системы памяти на интегральных схемах емкостью несколько мегабайт. 
 
Четырехразрядный микропроцессор Intel 8004 был разработан в 1971 г. В следующем году был выпущен восьмиразрядный процессор, а в 1973 г. фирма Intel выпустила процессор 8080, который был в 10 раз быстрее, чем 8008, и мог адресовать 64 Кбайт памяти. Это был один из самых серьезных шагов по пути к созданию современных персональных компьютеров. Фирма IBM выпустила свой первый персональный компьютер в1975 г. Модель 5100 имела 16 Кбайт памяти, встроенный интерпретатор языка BASIC и встроенный кассетный лентопротяжный механизм, который использовался в качестве запоминающего устройства. Дебют IBM PC состоялся в 1981 г. В этот день новый стандарт занял свое место в компьютерной индустрии. Для этого семейства было написано большое количество различных программ. Новая модификация получила название «расширенного» (IBM PC-XT) (рис. 1.10). 
 
 Рис. 1.10. Персональная ЭВМ  
IBM 
 
PC 

XT 
 
 
                               
 
 
Производители отказались от использования магнитофона в качестве накопителя информации, добавили второй привод для гибких дисков, а в качестве основного устройства для сохранения данных и программ использовался жесткий диск емкостью 20 МБ. Модель базировалась на использовании микропроцессора - Intel 8088. Вследствие естественного прогресса в области разработки и производства микропроцессорной техники фирма Intel - постоянный партнер IBM - освоила выпуск новой серии процессоров - Intel 80286. Соответственно, появилась и новая модель IBM РС. Она получила название IBM PC-AT. Следующий этап - разработка микропроцессоров Intel 80386 и Intel 80486, которые еще можно встретить и в наши дни. Затем были разработаны процессоры Pentium, которые и являются самыми популярными процессорами на сегодняшний день. 
 
V поколение компьютеров. В 90-х годах XX в. огромное внимание стало уделяться не столько повышению технических характеристик компьютеров, сколько их «интеллектуальности», открытой архитектуре и возможностям объединения в сети. Внимание акцентируется на разработке баз знаний, дружественного интерфейса с пользователем, графических средств представления информации и разработке средств макропрограммирования. Четких  определений этого этапа развития средств ВТ нет, поскольку элементная база, на которой основывается данная классификация, осталась прежней - ясно, что все компьютеры, выпускаемые в настоящее время, можно отнести к V поколению.


Информация о работе Краткая история развития вычислительной техники