Компьютерные сети

Автор: Пользователь скрыл имя, 15 Марта 2011 в 09:27, реферат

Краткое описание

Поэтому необходимо разработать принципиальное решение вопроса по организации ИВС (информационно-вычислительной сети) на базе уже существующего компьютерного парка и программного комплекса отвечающего современным научно-техническим требованиям с учетом возрастающих потребностей и возможностью дальнейшего постепенного развития сети в связи с появлением новых технических и программных решений

Оглавление

Введение 3
1. Основные понятия 4
1. Типы компьютерных сетей 7
Одноранговая сеть 7
Сеть на основе сервера 9
2. Топология сетей. Методы доступа 11
Элементы топологии сети. 11
Типы подключений (кабельных сегментов) 12
Физическая топология 13
Логическая топология. 14
Беспроводные локальные вычислительные сети 16
Методы передачи 16
3. Технологии коммутации кадров (frame switching) в локальных сетях 19
Ограничения традиционных технологий (Ethernet, Token Ring), основанных на разделяемых средах передачи данных 19
Принципы коммутации сегментов и узлов локальных сетей, использующих традиционные технологии 25
Заключение 34
Список литературы 35

Файлы: 1 файл

реферат по информатике.doc

— 184.50 Кб (Скачать)

     

     Рис. 2.1. Разделяемый канал передачи данных в сети Ethernet

     При передаче каким-нибудь компьютером  кадра данных все остальные компьютеры принимают его по общему коаксиальному  кабелю, находясь с передатчиком в  постоянном побитном синхронизме. На время  передачи этого кадра никакие  другие обмены информации в сети не разрешаются. Способ доступа к общему кабелю управляется несложным распределенным механизмом арбитража - каждый компьютер имеет право начать передачу кадра, если на кабеле отсутствуют информационные сигналы, а при одновременной передаче кадров несколькими компьютерами схемы приемников умеют распознавать и обрабатывать эту ситуацию, называемую коллизией. Обработка коллизии также несложна - все передающие узлы прекращают выставлять биты своих кадров на кабель и повторяют попытку передачи кадра через случайный промежуток времени.

     Работа  всех узлов сети Ethernet в режиме большой  распределенной электронной схемы  с общим тактовым генератором  приводит к нескольким ограничениям, накладываемым на сеть. Основными  ограничениями являются:

     Максимально допустимая длина сегмента. Она зависит  от типа используемого кабеля: для  витой пары это 100 м, для тонкого  коаксиала - 185 м, для толстого коаксиала - 500 м, а для оптоволокна - 2000 м. Для  наиболее дешевых и распространенных типов кабеля - витой пары и тонкого коаксиала - это ограничение часто становится весьма нежелательным. Технология Ethernet предлагает использовать для преодоления этого ограничения повторители и концентраторы, выполняющие функции усиления сигнала, улучшения формы фронтов импульсов и исправления погрешностей синхронизации. Однако возможности этих устройств по увеличению максимально допустимого расстояния между двумя любыми узлами сети (которое называется диаметром сети) не очень велики - число повторителей между узлами не может превышать 4-х (так называемое правило четырех хабов). Для витой пары это дает увеличение до 500 м (рисунок 2.2). Кроме того, существует общее ограничение на диаметр сети Ethernet - не более 2500 м для любых типов кабеля и любого количества установленных концентраторов. Это ограничение нужно соблюдать для четкого распознавания коллизий всеми узлами сети, как бы далеко (в заданных пределах) они друг от друга не находились, иначе кадр может быть передан с искажениями.

 

      

     

     Рис. 2.2. Максимальный диаметр сети Ethernet на витой паре

     Максимальное  число узлов в сети. Стандарты Ethernet ограничивают число узлов в  сети предельным значением в 1024 компьютера вне зависимости от типа кабеля и  количества сегментов, а каждая спецификация для конкретного типа кабельной системы устанавливает еще и свое, более жесткое ограничение. Так, к сегменту кабеля на тонком коаксиале нельзя подключить более 30 узлов, а для толстого коаксиала это число увеличивается до 100 узлов. В сетях Ethernet на витой паре и оптоволокне каждый отрезок кабеля соединяет всего два узла, но так как количество таких отрезков спецификация не оговаривает, то здесь действует общее ограничение в 1024 узла.

     Существуют  также и другие причины, кроме  наличия указанных в стандартах ограничений, по которым число узлов в сети Ethernet обычно не превосходит нескольких десятков. Эти причины лежат в самом принципе разделения во времени одного канала передачи данных между всеми узлами сети. При подключении к такому каналу каждый узел пользуется его пропускной способностью - 10 Мб/с - в течение только некоторой доли общего времени работы сети. Соответственно, на узел приходится эта же доля пропускной способности канала. Даже если упрощенно считать, что все узлы получают равные доли времени работы канала и непроизводительные потери времени отсутствуют, то при наличии в сети N узлов на один узел приходится только 10/N Мб/с пропускной способности. Очевидно, что при больших значениях N пропускная способность, выделяемая каждому узлу, оказывается настолько малой величиной, что нормальная работа приложений и пользователей становится невозможной - задержки доступа к сетевым ресурсам превышают тайм-ауты приложений, а пользователи просто отказываются так долго ждать отклика сети.

     Случайный характер алгоритма доступа к  среде передачи данных, принятый в технологии Ethernet, усугубляет ситуацию. Если запросы на доступ к среде генерируются узлами в случайные моменты времени, то при большой их интенсивности вероятность возникновения коллизий также возрастает и приводит к неэффективному использованию канала: время обнаружения коллизии и время ее обработки составляют непроизводительные затраты. Доля времени, в течение которого канал предоставляется в распоряжение конкретному узлу, становится еще меньше.

     На  рисунке 2.3 показана зависимость задержек доступа к среде передачи данных в сети Ethernet от количества узлов сети. Экспоненциальный рост задержек при увеличении числа узлов очень характерен как для технологии Ethernet, так и для других технологий локальных сетей, основанных на разделении каналов во времени - Token Ring, FDDI, 100VG-AnyLAN.

     Рис. 2.3. Зависимость задержек доступа  к среде передачи данных сети Ethernet от числа узлов сети

     До  недавнего времени в локальных  сетях редко использовались мультимедийные приложения, перекачивающие большие файлы данных, нередко состоящие из нескольких десятков мегабайт. Приложения же, работающие с алфавитно-цифровой информацией, не создавали значительного трафика. Поэтому долгое время для сегментов Ethernet было действительным эмпирическое правило - в разделяемом сегменте не должно быть больше 30 узлов. Теперь ситуация изменилась и нередко 3-4 компьютера полностью загружают сегмент Ethernet с его максимальной пропускной способностью в 10 Мб/с или же 14880 кадров в секунду.

     Более универсальным критерием загруженности сегмента Ethernet по сравнению с общим количеством узлов является суммарная нагрузка на сегмент, создаваемая его узлами. Если каждый узел генерирует в среднем mi кадров в секунду для передачи по сети, то средняя суммарная нагрузка на сеть будет составлять Si mi кадров в секунду. Известно, что при отсутствии коллизий, то есть при самом благоприятном разбросе запросов на передачу кадров во времени, сегмент Ethernet может передать не больше 14880 кадров в секунду (для самых коротких по стандарту кадров в 64 байта). Поэтому, если принять эту величину за единицу, то отношение Si mi/14880 будет характеризовать степень использования канала, называемый также коэффициентом загрузки.

     Зависимость времени ожидания доступа к сети от коэффициента загрузки гораздо меньше зависит от интенсивности трафика каждого узла, поэтому эту величину удобно использовать для оценки пропускной способности сети, состоящей из произвольного числа узлов. Имитационное моделирование сети Ethernet и исследование ее работы с помощью анализаторов протоколов показали, что при коэффициенте загрузки в районе 0.3 - 0.5 начинается быстрый рост числа коллизий и соответственно времени ожидания доступа. Поэтому во многих системах управления сетями пороговая граница для индикатора коэффициента загрузки по умолчанию устанавливается на величину 0.3.

     Ограничения, связанные с возникающими коллизиями и большим временем ожидания доступа  при значительной загрузке разделяемого сегмента, чаще всего оказываются  более серьезными, чем ограничение  на максимальное количество узлов, определенное в стандарте из соображений устойчивой передачи электрических сигналов в кабелях.

     Технология Ethernet была выбрана в качестве примера  при демонстрации ограничений, присущих технологиям локальных сетей, так  как в этой технологии ограничения проявляются наиболее ярко, а их причины достаточно очевидны. Однако подобные ограничения присущи и всем остальным технологиям локальных сетей, так как они опираются на использование среды передачи данных как одного разделяемого ресурса. Кольца Token Ring и FDDI также могут использоваться узлами сети только в режиме разделяемого ресурса. Отличие от канала Ethernet здесь состоит только в том, что маркерный метод доступа определяет детерминированную очередность предоставления доступа к кольцу, но по-прежнему при предоставлении доступа одного узла к кольцу все остальные узлы не могут передавать свои кадры и должны ждать, пока владеющий правом доступа узел не завершит свою передачу.

     Как и в технологии Ethernet, в технологиях Token Ring, FDDI, Fast Ethernet и 100VG-AnyLAN также определены максимальные длины отдельных физических сегментов кабеля и ограничения на максимальный диаметр сети и максимальное количество в ней узлов. Эти ограничения несколько менее стеснительны, чем у технологии Ethernet, но также могут быть серьезным препятствием при создании крупной сети.

     Особенно  же быстро может проявиться ограничение, связанное с коэффициентом загрузки общей среды передачи данных. Хотя метод маркерного доступа, используемый в технологиях Token Ring и FDDI, или метод приоритетных требований технологии 100VG-AnyLAN позволяют работать с более загруженными средами, все равно отличия эти только количественные - резкий рост времени ожидания начинается в таких сетях при больших коэффициентах загрузки, где-то в районе 60% - 70%. Качественный характер нарастания времени ожидания доступа и в этих технологиях тот же, и он не может быть принципиально иным, когда общая среда передачи данных разделяется во времени между компьютерами сети.

 

     Общее ограничение локальных сетей, построенных только с использованием повторителей и концентраторов, состоит в том, что общая производительность такой сети всегда фиксирована и равна максимальной производительности используемого протокола. И эту производительность можно повысить только перейдя к другой технологии, что связано с дорогостоящей заменой всего оборудования.

     Рассмотренные ограничения являются платой за преимущества, которые дает использование разделяемых  каналов в локальных сетях. Эти  преимущества существенны, недаром технологии такого типа существуют уже около 20 лет.

     К преимуществам нужно отнести  в первую очередь:

     простоту  топологии сети;

     гарантию  доставки кадра адресату при соблюдении ограничений стандарта и корректно  работающей аппаратуре;

     простоту  протоколов, обеспечившую низкую стоимость сетевых адаптеров, повторителей и концентраторов;

     Однако  начавшийся процесс вытеснения повторителей и концентраторов коммутаторами  говорит о том, что приоритеты изменились, и за повышение общей  пропускной способности сети пользователи готовы пойти на издержки, связанные с приобретением коммутаторов вместо концентраторов.

    Принципы  коммутации сегментов  и узлов локальных  сетей, использующих традиционные технологии

     Технология  коммутации сегментов Ethernet была предложена фирмой Kalpana в 1990 году в ответ на растущие потребности в повышении пропускной способности связей высокопроизводительных серверов с сегментами рабочих станций. Эта технология основана на отказе от использования разделяемых линий связи между всеми узлами сегмента и использовании коммутаторов, позволяющих одновременно передавать пакеты между всеми его парами портов.

 

     Функционально многопортовый коммутатор работает как многопортовый мост, то есть работает на канальном уровне, анализирует  заголовки кадров, автоматически строит адресную таблицу и на основании этой таблицы перенаправляет кадр в один из своих выходных портов или фильтрует его, удаляя из буфера. Новшество заключалось в параллельной обработке поступающих кадров, в то время как мост обрабатывает кадр за кадром. Коммутатор же обычно имеет несколько внутренних процессоров обработки кадров, каждый из которых может выполнять алгоритм моста. Таким образом, можно считать, что коммутатор - это мультипроцессорный мост, имеющий за счет внутреннего параллелизма высокую производительность.

     Структурная схема коммутатора EtherSwitch, предложенного  фирмой Kalpana, представлена на рисунке 2.9.

     Каждый  порт обслуживается одним процессором  пакетов Ethernet - EPP (Ethernet Packet Processor). Кроме  того, коммутатор имеет системный модуль, который координирует работу всех процессоров EPP. Системный модуль ведет общую адресную таблицу коммутатора и обеспечивает управление коммутатором по протоколу SNMP. Для передачи кадров между портами используется коммутационная матрица, подобная тем, которые работают в телефонных коммутаторах или мультипроцессорных компьютерах, соединяя несколько процессоров с несколькими модулями памяти.

     

     Рис. 2.9. Структура коммутатора Kalpana

     При поступлении кадра в какой-либо порт процессор EPP буферизует несколько первых байт кадра, для того, чтобы прочитать адрес назначения. После получения адреса назначения процессор сразу же принимает решение о передаче пакета, не дожидаясь прихода остальных байт кадра. Для этого он просматривает свой собственный кэш адресной таблицы, а если не находит там нужного адреса, то обращается к системному модулю, который работает в многозадачном режиме, параллельно обслуживая запросы всех процессоров EPP. Системный модуль производит просмотр общей адресной таблицы и возвращает процессору найденную строку, которую тот буферизует в своем кэше для последующего использования.

Информация о работе Компьютерные сети