Энтропия и информация

Автор: Пользователь скрыл имя, 27 Марта 2012 в 19:15, реферат

Краткое описание

Важнейшим шагом на пути постижения природы и механизмов антиэнтропийных процессов следует введение количественной меры информации. Первоначально эта мера предназначалась лишь для решения сугубо прикладных задач техники связи. Однако последующие исследования в области физики и биологии позволили выявить универсальные меры, предложенные К.Шенноном, позволяющие установить взаимосвязь между количеством информации и физической энтропией и в конечном счете определить сущность новой научной интерпретации понятия "информация" как меры структурной упорядоченности самых разнообразных по своей природе систем .

Оглавление

1.Введение ………………………………………………………..............................3-4
2.Основная часть
2.1 Понятие энтропии и информации ………………................5-6
2.2 Основа информационной теории ………………………...7-12
2.3 Информационная энтропия……………………………….13-15
2.4 Свойства и эффективность………………………………..16-17
2.5 Вариации и обобщения……………………………………………..18-21

3.Заключение …………………………………………………………………………………22
4.Список используемой литературы……………

Файлы: 1 файл

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИИ 2 (Восстановлен).docx

— 256.71 Кб (Скачать)

 

 

 

 

Реферат

по курсу «Концепции современного естествознания »

 

«Энтропия и информация»

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Новосибирск

2011г.

Оглавление.

 

1.Введение ………………………………………………………..............................3-4

2.Основная часть

    2.1 Понятие энтропии и информации ………………................5-6

    2.2 Основа информационной теории ………………………...7-12

    2.3 Информационная энтропия……………………………….13-15

    2.4 Свойства и эффективность………………………………..16-17

    2.5 Вариации и обобщения……………………………………………..18-21

 

3.Заключение …………………………………………………………………………………22

4.Список используемой литературы………………………………………………23 
Введение


Важнейшим шагом на пути постижения природы и механизмов антиэнтропийных  процессов следует введение количественной меры информации. Первоначально эта  мера предназначалась лишь для решения  сугубо прикладных задач техники  связи. Однако последующие исследования в области физики и биологии позволили  выявить универсальные меры, предложенные К.Шенноном, позволяющие установить взаимосвязь между количеством  информации и физической энтропией  и в конечном счете определить сущность новой научной интерпретации  понятия "информация" как меры структурной упорядоченности самых  разнообразных по своей природе  систем .  
Используя метафору, можно сказать, что до введения в науку единой информационной количественной меры представленный в естественно-научных понятиях мир как бы "опирался на двух китов": энергию и вещество. "Третьим китом" оказалась теперь информация, участвующая во всех протекающих в мире процессах, начиная от микрочастиц, атомов и молекул и кончая функционированием сложнейших биологических и социальных систем. 
Естественно, возникает вопрос: подтверждают или опровергают эволюционную парадигму происхождения жизни и биологических видов новейшие данные современной науки? 
Для ответа на этот вопрос необходимо прежде всего уяснить, какие именно свойства и стороны многогранного понятия "информация" отражает та количественная мера, которую ввел в науку К.Шеннон. 
Использование меры количества информации позволяет анализировать общие механизмы информационно-энтропийных взаимодействий, лежащих в основе всех самопроизвольно протекающих в окружающем мире процессов накопления информации, которые приводят к самоорганизации структуры систем. 
Вместе с тем информационно-энтропийный анализ позволяет выявить и пробелы эволюционных концепций, представляющих собой не более чем несостоятельные попытки сведения к простым механизмам самоорганизации проблему происхождения жизни и биологических видов без учета того обстоятельства, что системы такого уровня сложности могут быть созданы лишь на основе той информации, которая изначально заложена в предшествующий их сотворению план. 
Проводимые современной наукой исследования свойств информационных систем дают все основания утверждать, что все системы могут формироваться только согласно спускаемым с верхних иерархических уровней правилами, причем сами эти правила существовали раньше самих систем в форме изначального плана (идеи творения).

 

 

 

 

Понятие энтропии  и информации

  • Энтропи́я (от греч. ἐντροπία — поворот, превращение) в естественных науках — мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либо макроскопического состояния; в теории информации — мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит и количество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).

Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно.

,

где dS — приращение энтропии; δQ — минимальная теплота подведенная к системе; T — абсолютная температура процесса;

 

  • Информация (от лат. informatio, разъяснение, изложение, осведомленность) — общенаучное понятие, связанное с объективными свойствами материи и их отражением в человеческом сознании.

В современной науке рассматриваются  два вида информации.

Объективная (первичная) информация - свойство материальных объектов и явлений (процессов) порождать  многообразие состояний, которые посредством  взаимодействий (фундаментальные взаимодействия) передаются другим объектам и запечатлеваются в их структуре.

  Субъективная (семантическая,смысловая, вторичная) информация – смысловое содержание объективной информации об объектах и процессах материального мира, сформированное сознанием человека с помощью смысловых образов (слов, образов и ощущений) и зафиксированное на каком-либо материальном носителе.

В настоящее время не существует единого  определения информации как научного термина. С точки зрения различных  областей знания, данное понятие описывается  своим специфическим набором  признаков.

 

 

 

Основа  информационной теории

В основу теории информации положен  предложенный К.Шенноном метод исчислений количества новой (непредсказуемой) и  избыточной (предсказуемой) информации, содержащейся в сообщениях, передаваемых по каналам технической связи. 
Предложенный Шенноном метод измерения количества информации оказался настолько универсальным, что его применение не ограничивается теперь узкими рамками чисто технических приложений. 
Вопреки мнению самого К.Шеннона, предостерегавшего ученых против поспешного распространения предложенного им метода за пределы прикладных задач техники связи, этот метод стал находить все более широкое применение в исследованиях и физических, и биологических, и социальных систем . 
Ключом к новому пониманию сущности феномена информации и механизма информационных процессов послужила установленная Л.Бриллюэном взаимосвязь информации и физической энтропии. Эта взаимосвязь была первоначально заложена в самый фундамент теории информации, поскольку для исчисления количества информации Шеннон предложил использовать заимствованную из статистической термодинамики вероятную функцию энтропии. 
Многие ученые (начиная с самого К.Шеннона) склонны были рассматривать такое заимствование как чисто формальный прием. Л.Бриллюэн показал, что между вычисленным согласно Шеннону количеством информации и физической энтропии существует не формальная, а содержательная связь. 
 
В статистической физике с помощью вероятностной функции энтропии исследуются процессы, приводящие к термодинамическому равновесию, при котором все состояния молекул (их энергии, скорости) приближаются к равновероятным, а энтропия при этом стремится к максимальной величине. 
 
Благодаря теории информации стало очевидно, что с помощью той же самой функции можно исследовать и такие далекие от состояния максимальной энтропии системы, как, например, письменный текст. 
Еще один важный вывод заключается в том, что 
с помощью вероятностной функции энтропии можно анализировать все стадии перехода системы от состояния полного хаоса, которому соответствуют равные значения вероятностей и максимальное значение энтропии, к состоянию предельной упорядоченности (жесткой детерминации), которому соответствует единственно возможное состояние ее элементов. 
 
Данный вывод оказывается в равной мере справедливым для таких несходных по своей природе систем, как газы, кристаллы, письменные тексты, биологические организмы или сообщества и др. 
При этом, если для газа или кристалла при вычислении энтропии сравнивается только микросостояние (т.е. состояние атомов и молекул) и макросостояние этих систем (т.е. газа или кристалла как целого), то для систем иной природы (биологических, интеллектуальных, социальных) вычисление энтропии может производится на том или ином произвольно выбранном уровне. При этом вычисляемое значение энтропии рассматриваемой системы и количество информации, характеризующей степень упорядоченности данной системы и равное разности между максимальным и реальным значением энтропии, будет зависеть от распределения вероятности состояний элементов нижележащего уровня, т.е. тех элементов, которые в своей совокупности образуют эти системы. 
Другими словами, 
количество сохраняемой в структуре системы информации пропорционально степени отклонения системы от состояния равновесия, обусловленного сохраняемым в структуре системы порядком. 
 
Сам того не подозревая, Шеннон вооружил науку универсальной мерой, пригодной в принципе (при условии выявления значенй всех вероятностей) для оценки степени упорядоченности всех существующих в мире систем. 
Опредеделив введенную Шеноном информационную меру как меру упорядоченности движения, можно установить взаимосвязь информации и энергии, считая энергию мерой интенсивности движения. При этом количество сохраняемой в структуре систем информации пропорционально суммарной энергии внутренних связей этих систем. 
Одновременно с выявлением общих свойств информации как феномена обнаруживаются и принципиальные различия относящихся к различным уровням сложности информационных систем. 
Так, например, все физические объекты, в отличие от биологических, не обладают специальными органами памяти, перекодировки поступающих из внешнего мира сигналов, информационными каналами связи. Хранимая в них информация как бы "размазана" по всей их структуре. Вместе с тем, если бы кристаллы не способны были сохранять информацию в определяющих их упорядоченность внутренних связях, не было бы возможности создавать искусственную память и предназначенные для обработки информации технические устройства на основе кристаллических структур. 
Вместе с тем необходимо учитывать, что создание подобных устройств стало возможным лишь благодаря разуму человека, сумевшего использовать элементарные информационные свойства кристаллов для построения сложных информационных систем. 
Простейшая биологическая система превосходит по своей сложности самую совершенную из созданных человеком информационных систем. Уже на уровне простейших одноклеточных организмов задействован необходимый для их размножения сложнейший информационный генетический механизм. В многоклеточных организмах помимо информационной системы наследственности действуют специализированные органы хранения информации и ее обработки (например, системы, осуществляющие перекодирование поступающих из внешнего мира зрительных и слуховых сигналов перед отправкой их в головной мозг, системы обработки этих сигналов в головном мозге). Сложнейшая сеть информационных коммуникаций (нервная система) пронизывает и превращает в целое весь многоклеточный организм. 
Уже на уровне биологических систем возникают проблемы учета ценности и смысла используемой этими системами информации. Еще в большей мере такой учет необходим для ананлиза функционирования интеллектуальных информационных систем. 
Глубокое осознание специфики биологических и интеллектуальных систем позволяет выявить те границы, за пределами которых утрачивает свою компетентность разработанный современной наукой информационно-энтропийный подход. 
Определить эти границы Шеннону пришлось на самом начальном этапе создания теории информации, поскольку без этого нельзя было использовать количественную меру информации для оценки письменных текстов и других созданных разумом человека информационных систем. Именно с этой целью Шеннон делает оговорку о том, что предложенный им метод исчисления информации письменных текстов игнорирует такие же их неотъемлемые свойства, как смысл и ценность содержащихся в них сообщений. 
Так, например, при подсчете количества информации, содержащейся в таких двух сообщениях, как "очередную партию Каспаров играет белыми" и "у гражданина Белова родился сын" получится одна и та же величина - 1 бит. Нет сомнения, что два этих сообщения несут разный смысл и имеют далеко не равнозначную ценность для гражданина Белова. Однако, как было отмечено выше, оценка смысла и ценности информации находится за пределами компетенции теории информации и поэтому не влияет на подсчитываемое с помощью формулы Шеннона количество бит. 
Игнорирование смысла и ценности информации не помешало Шеннону решать прикладные задачи, для которых предназначалась первоначально его теория: инженеру по технике связи вовсе не обязательно вникать в суть сообщений, передаваемых по линии связи. Его задача заключается в том, чтобы любое подобное сообщение передавать как можно скорее, с наименьшими затратами средств (энергии, диапазона используемых частот) и, по возможности, безо всяких потерь. И пусть тот, кому предназначена данная информация (получатель сообщений), вникает в смысл, определяет ценность, решает, как использовать ту информацию, которую он получил. 
Такой сугубо прагматичный подход позволил Шеннону ввести единую, не зависящую от смысла и ценности, меру количества информации, которая оказалась пригодной для анализа всех обладающих той или иной степенью упорядоченности систем. 
После основополагающих работ Шеннона начали разрабатываться основы смысловой (семантической) и ценностной (прагматической, аксиологической) информационных теорий . 
Однако ни одной из этих теорий и предлагаемых их авторами единиц измерения ценности или смысла не суждено было приобрести такую же степень универсальности, какой обладает мера, которую ввел в науку Шеннон. 
Дело в том, что количественные оценки смысла и ценности информации могут производится только после предварительного соглашения о том, что же именно в каждом конкретном случае имеет для рассматриваемых явлений ценность и смысл. Нельзя одними и теми же единицами измерить ценность информации, содержащейся, скажем, в законе Ома и в признании любви. Иными словами, критерии смысла и ценности всегда субъективны, а потому применимость их ограничена, в то время как мера, предложенная Шенноном, полностью исключает субъективизм при оценке степени упорядоченности структуры исследуемых систем. 
Так что же характеризует подсчитанная по формуле Шеннона величина энтропии текста, выражаемая количеством бит? Только лишь одно свойство этого текста - степень его упорядоченности или , иными словами, степень его отклонения от состояния полного хаоса, при котором все буквы имели бы равную вероятность, а текст превратился бы в бессмысленный набор букв. 
Упорядоченность текста (или любой другой исследуемой системы) будет тем больше, чем больше различие вероятностей и чем больше вероятность последующего события будет зависеть от вероятностей предыдущих событий1. При этом, 
согласно негэнтропийному принципу информации количество информации, выражающее этот порядок, будет равно уменьшению энтропии системы по сравнению с максимально возможной величиной энтропии, соответствующей отсутствию упорядоченности и наиболее хаотичному состоянию систем. 
 
Методы исчисления информации, предложенные Шенноном, позволяют выявить соотношение количества предсказуемой (то есть формируемой по определенным правилам) информации и количества той неожиданной информации, которую нельзя заранее предсказать. 
 
Содержащуюся в правилах информацию Шеннон определил как ИЗБЫТОЧНУЮ, потому что знание правил построения сообщений позволяет предсказывать появление букв (или других символов) раньше, чем они будут сообщены по линии связи. 
Таким способом удается в той или иной степени "разгрузить" предназначенный для передачи сообщений канал. Проведенный Шенноном анализ английских текстов показал, что содержащаяся в них избыточная информация составляет около 80% от общего количества информации, которое заключает в себе письменный текст. Остальные 20% - это та самая энтропия, благодаря которой текст может служить источником непредсказуемой энергии . 
Если бы текстовые, устные или зрительные (в частности телевизионные) сообщения были полностью лишены энтропии, они не приносили бы получателям сообщений никаких новостей. 
Если бы письменный текст строился только на основании заранее сформулированных правил , то, установив эти правила по тексту первой страницы, можно было бы заранее предсказать, что будет написано на страницах 50, 265, 521 и т.д. 
 

Информационная  энтропия

 

 Информационная энтропи́я — мера хаотичности информации, неопределѐнность появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Например, в последовательности букв, составляющих какое-либо предложение  на русском языке, разные буквы появляются с разной частотой, поэтому неопределѐнность появления для некоторых букв меньше, чем для других. Если же учесть, что некоторые сочетания букв (в этом случае говорят об энтропии n-ого порядка, встречаются очень редко, то неопределѐнность ещѐ более уменьшается.

Для иллюстрации  понятия информационной энтропии можно  также прибегнуть к примеру из области термодинамической энтропии, получившему название демона Максвелла. Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу.

Информационная  двоичная энтропия для независимых случайных событий x с n возможными состояниями (от 1 до n) рассчитывается по формуле:

Эта величина также называется средней энтропией сообщения. Величина называется частной энтропией, характеризующей только i-e состояние.

Таким образом, энтропия события x является суммой с противоположным знаком всех произведений относительных частот появления события i, умноженных на их же двоичные логарифмы. Это определение для дискретных случайных событий можно расширить для функции распределения вероятностей.

Определение по Шеннону

Шеннон предположил, что прирост информации равен утраченной неопределённости, и задал требования к её измерению:

  1. мера должна быть непрерывной; то есть изменение значения величины вероятности на малую величину должно вызывать малое результирующее изменение функции;
  2. в случае, когда все варианты (буквы в приведённом примере) равновероятны, увеличение количества вариантов (букв) должно всегда увеличивать значение функции;
  3. должна быть возможность сделать выбор (в нашем примере букв) в два шага, в которых значение функции конечного результата должно являться суммой функций промежуточных результатов.

Поэтому функция энтропии H должна удовлетворять условиям:

  1. определена и непрерывна для всех , где для всех и . (Нетрудно видеть, что эта функция зависит только от распределения вероятностей, но не от алфавита.)
  2. Для целых положительных n, должно выполняться следующее неравенство:

  1. Для целых положительных bi, где , должно выполняться равенство:

Шеннон  показал,[источник?] что единственная функция, удовлетворяющая этим требованиям, имеет вид:

где K — константа (и в действительности нужна только для выбора единиц измерения).

Шеннон  определил, что измерение энтропии

( ), применяемое к источнику информации, может определить требования к минимальной пропускной способности канала, требуемой для надёжной передачи информации в виде закодированных двоичных чисел. Для вывода формулы Шеннона необходимо вычислить математическое ожидание «количества информации», содержащегося в цифре из источника информации. Мера энтропии Шеннона выражает неуверенность реализации случайной переменной. Таким образом, энтропия является разницей между информацией, содержащейся в сообщении, и той частью информации, которая точно известна (или хорошо предсказуема) в сообщении. Примером этого является избыточность языка — имеются явные статистические закономерности в появлении букв, пар последовательных букв, троек и т. д.

Определение энтропии Шеннона связано с понятием термодинамической энтропии. Больцман и Гиббс проделали большую работу по статистической термодинамике, которая способствовала принятию слова «энтропия» в информационную теорию. Существует связь между термодинамической и информационной энтропией. Например, демон Максвелла также противопоставляет термодинамическую энтропию информации, и получение какого-либо количества информации равно потерянной энтропии.

Определение с помощью собственной информации

Также можно определить энтропию случайной  величины, введя предварительно понятия  распределения случайной величины X, имеющей конечное число значений:

и собственной информации:

I(X) = − logPX(X).

Тогда энтропия определяется как:

От  основания логарифма зависит  единица измерения информации и  энтропии: бит, трит, нат или хартли.

 

 

Свойства и эффективность

Энтропия  является количеством, определённым в  контексте вероятностной модели для источника данных. Например, кидание монеты имеет энтропию − 2(0,5log20,5) = 1 бит на одно кидание (при условии его независимости). У источника, который генерирует строку, состоящую только из букв «А», энтропия равна нулю: . Так, например, опытным путём можно установить, что энтропия английского текста равна 1,5 бит на символ, что конечно будет варьироваться для разных текстов. Степень энтропии источника данных означает среднее число битов на элемент данных, требуемых для её зашифровки без потери информации, при оптимальном кодировании.

  1. Некоторые биты данных могут не нести информации. Например, структуры данных часто хранят избыточную информацию, или имеют идентичные секции независимо от информации в структуре данных.
  2. Количество энтропии не всегда выражается целым числом бит.

Математические свойства

  1. Неотрицательность: .
  2. Ограниченность: . Равенство, если все элементы из X равновероятны.
  3. Если независимы, то .
  4. Энтропия — выпуклая вверх функция распределения вероятностей элементов.
  5. Если имеют одинаковое распределение вероятностей элементов, то H(X) = H(Y).

Алфавит может иметь вероятностное распределение  далекое от равномерного. Если исходный алфавит содержит n символов, тогда его можно сравнить с «оптимизированным алфавитом», вероятностное распределение которого равномерное. Соотношение энтропии исходного и оптимизированного алфавита — это эффективность исходного алфавита, которая может быть выражена в процентах. Эффективность исходного алфавита с n символами может быть также определена как его n-арная энтропия.

Энтропия  ограничивает максимально возможное  сжатие без потерь (или почти без  потерь), которое может быть реализовано  при использовании теоретически — типичного набора или, на практике, — кодирования Хаффмана, кодирования Лемпеля — Зива — Велча или арифметического кодирования.

 

Вариации и обобщения

b-арная энтропия

В общем случае b-арная энтропия (где b равно 2, 3, …) источника с исходным алфавитом и дискретным распределением вероятности где pi является вероятностью ai (pi = p(ai)), определяется формулой:

Условная энтропия

Если  следование символов алфавита не независимо (например, во французском языке после буквы «q» почти всегда следует «u», а после слова «передовик» в советских газетах обычно следовало слово «производства» или «труда»), количество информации, которую несёт последовательность таких символов (а, следовательно, и энтропия), очевидно, меньше. Для учёта таких фактов используется условная энтропия.

Условной  энтропией первого порядка (аналогично для Марковской модели первого порядка) называется энтропия для алфавита, где известны вероятности появления одной буквы после другой (то есть, вероятности двухбуквенных сочетаний):

где i — это состояние, зависящее от предшествующего символа, и pi(j) — это вероятность j при условии, что i был предыдущим символом.

Информация о работе Энтропия и информация