Автор: Пользователь скрыл имя, 31 Октября 2012 в 15:58, реферат
В истории вычислительной техники можно проследить развитие двух основных областей ее использования. Первая область — применение вычислительной техники для выполнения численных расчетов, которые слишком долго или вообще невозможно производить вручную. Развитие этой области способствовало интенсификации методов численного решения сложных математических задач, появлению языков программирования, ориентированных на удобную запись численных алгоритмов, становлению обратной связи с разработчиками новых архитектур ЭВМ. Характерной особенностью данной области применения вычислительной техники является наличие сложных алгоритмов обработки, которые применяются к простым по структуре данным, объем которых сравнительно невелик.
1 История развития баз данных
2 Файлы и файловые системы
3 Эпоха персональных компьютеров
4 Распределенные базы данных
5 Перспективы развития систем управления базами данных
6 Основные понятия и определения
7 Пример описания предметной области
8 Ссылки
Содержание
1 История развития баз данных
2 Файлы и файловые системы
3 Эпоха персональных компьютеров
4 Распределенные базы данных
5 Перспективы развития систем управления базами данных
6 Основные понятия и определения
7 Пример описания предметной области
8 Ссылки
История развития баз данных
В истории вычислительной техники можно проследить развитие двух основных областей ее использования. Первая область — применение вычислительной техники для выполнения численных расчетов, которые слишком долго или вообще невозможно производить вручную. Развитие этой области способствовало интенсификации методов численного решения сложных математических задач, появлению языков программирования, ориентированных на удобную запись численных алгоритмов, становлению обратной связи с разработчиками новых архитектур ЭВМ. Характерной особенностью данной области применения вычислительной техники является наличие сложных алгоритмов обработки, которые применяются к простым по структуре данным, объем которых сравнительно невелик.
Вторая область, которая непосредственно относится к нашей теме, — это использование средств вычислительной техники в автоматических или автоматизированных информационных системах. Информационная система представляет собой программно-аппаратный комплекс, обеспечивающий выполнение следующих функций:
надежное хранение информации в памяти компьютера;
выполнение специфических для данного приложения преобразований информации и вычислений;
предоставление пользователям удобного и легко осваиваемого интерфейса.
Обычно такие системы
имеют дело с большими объемами информации,
имеющей достаточно сложную структуру.
Классическими примерами
Вторая область использования вычислительной техники возникла несколько позже первой. Это связано с тем, что на заре вычислительной техники возможности компьютеров по хранению информации были очень ограниченными. Говорить о надежном и долговременном хранении информации можно только при наличии запоминающих устройств, сохраняющих информацию после выключения электрического питания. Оперативная (основная) память компьютеров этим свойством обычно не обладает. В первых компьютерах использовались два вида устройств внешней памяти — магнитные ленты и барабаны. Емкость магнитных лент была достаточно велика, но по своей физической природе они обеспечивали последовательный доступ к данным. Магнитные же барабаны (они ближе всего к современным магнитным дискам с фиксированными головками) давали возможность произвольного доступа к данным, но имели ограниченный объем хранимой информации.
Эти ограничения не являлись
слишком существенными для
Можно предположить, что именно требования нечисловых приложений вызвали появление съемных магнитных дисков с подвижными головками, что явилось революцией в истории вычислительной техники. Эти устройства внешней памяти обладали существенно большей емкостью, чем магнитные барабаны, обеспечивали удовлетворительную скорость доступа к данным в режиме произвольной выборки, а возможность смены дискового пакета на устройстве позволяла иметь практически неограниченный архив данных.
С появлением магнитных дисков
началась история систем управления
данными во внешней памяти. До этого
каждая прикладная программа, которой
требовалось хранить данные во внешней
памяти, сама определяла расположение
каждой порции данных на магнитной
ленте или барабане и выполняла
обмены между оперативной памятью
и устройствами внешней памяти с
помощью программно-аппаратных средств
низкого уровня (машинных команд или
вызовов соответствующих
Файлы и файловые системы
Важным шагом в развитии
именно информационных систем явился
переход к использованию
Конкретные модели файлов,
используемые в системе управления
файлами, мы рассмотрим далее, когда
перейдем к физическим способам организации
баз данных, а на этом этапе нам
достаточно знать, что пользователи
видят файл как линейную последовательность
записей и могут выполнить
над ним ряд стандартных
создать файл (требуемого типа и размера);
открыть ранее созданный файл;
прочитать из файла некоторую запись (текущую, следующую, предыдущую, первую, последнюю);
записать в файл на место текущей записи новую, добавить новую запись в конец файла.
В разных файловых системах
эти операции могли несколько
отличаться, но общий смысл их был
именно таким. Главное, что следует
отметить, это то, что структура
записи файла была известна только
программе, которая с ним работала,
система управления файлами не знала
ее. И поэтому для того, чтобы
извлечь некоторую информацию из
файла, необходимо было точно знать
структуру записи файла с точностью
до бита. Каждая программа, работающая
с файлом, должна была иметь у
себя внутри структуру данных, соответствующую
структуре этого файла. Поэтому
при изменении структуры файла
требовалось изменять структуру
программы, а это требовало новой
компиляции, то есть процесса перевода
программы в исполняемые
Далее, поскольку файловые
системы являются общим хранилищем
файлов, принадлежащих, вообще говоря,
разным пользователям, системы управления
файлами должны обеспечивать авторизацию
доступа к файлам. В общем виде
подход состоит в том, что по отношению
к каждому зарегистрированному
пользователю данной вычислительной системы
для каждого существующего
Следующей причиной стала
необходимость обеспечения
В системах управления файлами обычно применялся следующий подход. В операции открытия файла (первой и обязательной операции, с которой должен начинаться сеанс работы с файлом) среди прочих параметров указывался режим работы (чтение или изменение). Если к моменту выполнения этой операции некоторым пользовательским процессом PR1 файл был уже открыт другим процессом PR2 в режиме изменения, то в зависимости от особенностей системы процессу PR1 либо сообщалось о невозможности открытия файла, либо он блокировался до тех пор, пока в процессе PR2 не выполнялась операция закрытия файла.
При подобном способе организации одновременная работа нескольких пользователей, связанная с модификацией данных в файле, либо вообще не реализовывалась, либо была очень замедлена.
Эти недостатки послужили тем толчком, который заставил разработчиков информационных систем предложить новый подход к управлению информацией. Этот подход был реализован в рамках новых программных систем, названных впоследствии Системами Управления Базами Данных (СУБД), а сами хранилища информации, которые работали под управлением данных систем, назывались базами или банками данных (БД и БнД).
Первый этап — базы данных на больших ЭВМ
История развития СУБД насчитывает более 30 лет. В 1968 году была введена в эксплуатацию первая промышленная СУБД система IMS фирмы IBM. В 1975 году появился первый стандарт ассоциации по языкам систем обработки данных — Conference of Data System Languages (CODASYL), который определил ряд фундаментальных понятий в теории систем баз данных, которые и до сих пор являются основополагающими для сетевой модели данных.
В дальнейшее развитие теории баз данных большой вклад был сделан американским математиком Э. Ф. Коддом, который является создателем реляционной модели данных. В 1981 году Э. Ф. Кодд получил за создание реляционной модели и реляционной алгебры престижную премию Тьюринга Американской ассоциации по вычислительной технике.
Менее двух десятков лет прошло с этого момента, но стремительное развитие вычислительной техники, изменение ее принципиальной роли в жизни общества, обрушившийся бум персональных ЭВМ и, наконец, появление мощных рабочих станций и сетей ЭВМ повлияло также и на развитие технологии баз данных. Можно выделить четыре этапа в развитии данного направления в обработке данных. Однако необходимо заметить, что все же нет жестких временных ограничений в этих этапах: они плавно переходят один в другой и даже сосуществуют параллельно, но тем не менее выделение этих этапов позволит более четко охарактеризовать отдельные стадии развития технологии баз данных, подчеркнуть особенности, специфичные для конкретного этапа.
Первый этап развития СУБД связан с организацией баз данных на больших машинах типа IBM 360/370, ЕС-ЭВМ и мини-ЭВМ типа PDP11 (фирмы Digital Equipment Corporation — DEC), разных моделях HP (фирмы Hewlett Packard).
Базы данных хранились
во внешней памяти центральной ЭВМ,
пользователями этих баз данных были
задачи, запускаемые в основном в
пакетном режиме. Интерактивный режим
доступа обеспечивался с
Особенности этого этапа развития выражаются в следующем:
Все СУБД базируются на мощных мультипрограммных операционных системах (MVS, SVM, RTE, OSRV, RSX, UNIX), поэтому в основном поддерживается работа с централизованной базой данных в режиме распределенного доступа.
Функции управления распределением ресурсов в основном осуществляются операционной системой (ОС).
Поддерживаются языки низкого уровня манипулирования данными, ориентированные на навигационные методы доступа к данным.
Значительная роль отводится администрированию данных.
Проводятся серьезные работы по обоснованию и формализации реляционной модели данных, и была создана первая система (System R), реализующая идеологию реляционной модели данных.
Проводятся теоретические работы по оптимизации запросов и управлению распределенным доступом к централизованной БД, было введено понятие транзакции.
Результаты научных
Появляются первые языки высокого уровня для работы с реляционной моделью данных. Однако отсутствуют стандарты для этих первых языков.
Эпоха персональных компьютеров
Персональные компьютеры стремительно ворвались в нашу жизнь и буквально перевернули наше представление о месте и роли вычислительной техники в жизни общества. Теперь компьютеры стали ближе и доступнее каждому пользователю. Исчез благоговейный страх рядовых пользователей перед непонятными и сложными языками программирования. Появилось множество программ, предназначенных для работы неподготовленных пользователей. Эти программы были просты в использовании и интуитивно понятны: это прежде всего различные редакторы текстов, электронные таблицы и другие. Простыми и понятными стали операции копирования файлов и перенос информации с одного компьютера на другой, распечатка текстов, таблиц и других документов. Системные программисты были отодвинуты на второй план. Каждый пользователь мог себя почувствовать полным хозяином этого мощного и удобного устройства, Позволяющего автоматизировать многие аспекты деятельности. И, конечно, это сказалось и на работе с базами данных. Появились программы, которые назывались системами управления базами данных и позволяли хранить значительные объемы информации, они имели удобный интерфейс для заполнения данных, встроенные средства для генерации различных отчетов. Эти программы позволяли автоматизировать многие учетные функции, которые раньше велись вручную. Постоянное снижение цен на персональные компьютеры сделало их доступными не только для организаций и фирм, но и для отдельных пользователей. Компьютеры стали инструментом для ведения документации и собственных учетных функций. Это все сыграло как положительную, так и отрицательную роль в области развития баз данных. Кажущаяся простота и доступность персональных компьютеров и их программного обеспечения породила множество дилетантов. Эти разработчики, считая себя знатоками, стали проектировать недолговечные базы данных, которые не учитывали многих особенностей объектов реального мира. Много было создано систем-однодневок, которые не отвечали законам развития и взаимосвязи реальных объектов. Однако доступность персональных компьютеров заставила пользователей из многих областей знаний, которые ранее не применяли вычислительную технику в своей деятельности, обратиться к ним. И спрос на развитые удобные программы обработки данных заставлял поставщиков программного обеспечения поставлять все новые системы, которые принято называть настольными (desktop) СУБД. Значительная конкуренция среди поставщиков заставляла совершенствовать эти системы, предлагая новые возможности, улучшая интерфейс и быстродействие систем, снижая их стоимость. Наличие на рынке большого -числа СУБД, выполняющих сходные функции, потребовало разработки методов экспорта-импорта данных для этих систем и открытия форматов хранения данных.