Автор: Пользователь скрыл имя, 14 Декабря 2012 в 19:23, реферат
Компьютерной сетью называют совокупность узлов (компьютеров, терминалов, периферийных устройств), имеющих возможность информационного взаимодействия друг с другом с помощью специального коммуникационного оборудования и программного обеспечения.
4 Метод доступа, используемый при беспроводной связи
Стандарт IEEE 802.11 для беспроводного доступа
Комитет по стандартам IEEE 802 сформировал рабочую группу по стандартам для беспроводных локальных сетей 802.11 в 1990 году. Эта группа занялась разработкой всеобщего стандарта для радиооборудования и сетей, работающих на частоте 2,4 ГГц, со скоростями доступа 1 и 2 Mbps (Megabits-per-second). Работы по созданию стандарта были завершены через 7 лет, и в июне 1997 года была ратифицирована первая спецификация 802.11. Стандарт IEEE 802.11 являлся первым стандартом для продуктов WLAN от независимой международной организации, разрабатывающей большинство стандартов для проводных сетей. Однако к тому времени заложенная первоначально скорость передачи данных в беспроводной сети уже не удовлетворяла потребностям пользователей. Для того, чтобы сделать технологию Wireless LAN популярной, дешёвой, а главное, удовлетворяющей современным жёстким требованиям бизнес-приложений, разработчики были вынуждены создать новый стандарт.
В сентябре 1999 года IEEE ратифицировал расширение предыдущего стандарта. Названное IEEE 802.11b (также известное, как 802.11 High rate), оно определяет стандарт для продуктов беспроводных сетей, которые работают на скорости 11 Mbps (подобно Ethernet), что позволяет успешно применять эти устройства в крупных организациях. Совместимость продуктов различных производителей гарантируется независимой организацией, которая называется Wireless Ethernet Compatibility Alliance (WECA). Эта организация была создана лидерами индустрии беспроводной связи в 1999 году. В настоящее время членами WECA являются более 80 компаний, в том числе такие известные производители, как Cisco , Lucent , 3Com , IBM , Intel, Apple, Compaq, Dell , Fujitsu , Siemens , Sony , AMD и пр.
Стандарт IEEE 802.11 и его расширение 802.11b
Как и все стандарты IEEE 802, 802.11 работает на нижних двух уровнях модели ISO/OSI, физическом уровне и канальном уровне (Рисунок 3). Любое сетевое приложение, сетевая операционная система, или протокол (например, TCP/IP), будут так же хорошо работать в сети 802.11, как и в сети Ethernet.
Рисунок 3. Уровни модели ISO/OSI и их соответствие стандарту 802.11
Основная архитектура, особенности и службы 802.11b определяются в первоначальном стандарте 802.11. Спецификация 802.11b затрагивает только физический уровень, добавляя лишь более высокие скорости доступа.
Режимы работы 802.11
802.11 определяет два
типа оборудования – клиент, который
обычно представляет собой
Стандарт IEEE 802.11 определяет два режима работы сети – режим "Ad-hoc" и клиент/сервер (или режим инфраструктуры – infrastructure mode). В режиме клиент/сервер беспроводная сеть состоит из как минимум одной точки доступа, подключенной к проводной сети, и некоторого набора беспроводных оконечных станций. Такая конфигурация носит название базового набора служб (Basic Service Set, BSS). Два или более BSS, образующих единую подсеть, формируют расширенный набор служб (Extended Service Set, ESS). Так как большинству беспроводных станций требуется получать доступ к файловым серверам, принтерам, Интернет, доступным в проводной локальной сети, они будут работать в режиме клиент/сервер.
Режим "Ad-hoc" (также называемый точка-точка, или независимый базовый набор служб, IBSS) – это простая сеть, в которой связь между многочисленными станциями устанавливается напрямую, без использования специальной точки доступа. Такой режим полезен в том случае, если инфраструктура беспроводной сети не сформирована (например, отель, выставочный зал, аэропорт), либо по каким-то причинам не может быть сформирована.
Рисунок 4. Архитектура сети "Ad-hoc"
Физический уровень 802.11
На физическом уровне определены два широкополосных радиочастотных метода передачи и один – в инфракрасном диапазоне. Радиочастотные методы работают в ISM диапазоне 2,4 ГГц и обычно используют полосу 83 МГц от 2,400 ГГц до 2,483 ГГц. Технологии широкополосного сигнала, используемые в радиочастотных методах, увеличивают надёжность, пропускную способность, позволяют многим несвязанным друг с другом устройствам разделять одну полосу частот с минимальными помехами друг для друга.
Канальный (Data Link) уровень 802.11
Канальный уровень 802.11 состоит из двух подуровней: управления логической связью (Logical Link Control, LLC) и управления доступом к носителю (Media Access Control, MAC). 802.11 использует LLC и 48-битовую адресацию, что и другие сети 802, что позволяет легко объединять беспроводные и проводные сети, однако MAC уровень имеет кардинальные отличия.
MAC уровень 802.11 поддерживает множество пользователей на общем носителе, когда пользователь проверяет носитель перед доступом к нему. Для Ethernet сетей 802.3 используется протокол Carrier Sence Multiple Access with Collision Detection (CSMA/CD), который определяет, как станции Ethernet получают доступ к проводной линии, и как они обнаруживают и обрабатывают коллизии, возникающие в том случае, если несколько устройств пытаются одновременно установить связь по сети.
CSMA/CA работает следующим
образом. Станция, желающая
Для определения того, является ли канал свободным, используется алгоритм оценки чистоты канала (Channel Clearance Algorithm, CCA). Его суть заключается в измерении энергии сигнала на антенне и определения мощности принятого сигнала (RSSI). Если мощность принятого сигнала ниже определённого порога, то канал объявляется свободным, и MAC уровень получает статус CTS. Если мощность выше порогового значения, передача данных задерживается в соответствии с правилами протокола. Стандарт предоставляет ещё одну возможность определения незанятости канала, которая может использоваться либо отдельно, либо вместе с измерением RSSI – метод проверки несущей. Этот метод является более выборочным, так как с его помощью производится проверка на тот же тип несущей, что и по спецификации 802.11. Наилучший метод для использования зависит от того, каков уровень помех в рабочей области.
Таким образом, CSMA/CA предоставляет способ разделения доступа по радиоканалу. Механизм явного подтверждения эффективно решает проблемы помех. Однако он добавляет некоторые дополнительные накладные расходы, которых нет в 802.3, поэтому сети 802.11 будут всегда работать медленнее, чем эквивалентные им Ethernet локальные сети [6].
Подключение к сети
MAC уровень 802.11 несёт ответственность за то, каким образом клиент подключается к точке доступа. Когда клиент 802.11 попадает в зону действия одной или нескольких точек доступа, он на основе мощности сигнала и наблюдаемого значения количества ошибок выбирает одну из них и подключается к ней. Как только клиент получает подтверждение того, что он принят точкой доступа, он настраивается на радиоканал, в котором она работает. Время от времени он проверяет все каналы 802.11, чтобы посмотреть, не предоставляет ли другая точка доступа службы более высокого качества. Если такая точка доступа находится, то станция подключается к ней, перенастраиваясь на её частоту.
Переподключение обычно происходит в том случае, если станция была физически перемещена вдаль от точки доступа, что вызвало ослабление сигнала. В других случаях повторное подключение происходит из-за изменения радиочастотных характеристик здания, или просто из-за большого сетевого трафика через первоначальную точку доступа. В последнем случае эта функция протокола известна как "балансировка нагрузки", так как её главное назначение – распределение общей нагрузки на беспроводную сеть наиболее эффективно по всей доступной инфраструктуре сети.
5 Безопасность беспроводных сетей
В сетях IEEE 802.11 предусмотрены определенные меры для ограничения круга клиентов, подключаемых к точке доступа. Каждой станции присваивается уникальный идентификационный номер ESSID, который требуется передать на точку доступа, чтобы соединиться с ней. Кроме того, каждая точка доступа может хранить у себя список MAC-адресов и соединять только тех клиентов, которые упомянуты в этом списке.
Шифрование передаваемой информации в беспроводных компьютерных сетях IEEE 802.11 осуществляется по стандарту WEP (Wired Equivalent Privacy, т.е. защита информации, эквивалентная проводной сети), в основе которого лежит алгоритм RC4 с длиной ключа 40 или 64 бит. На смену WEP идет стандарт WEP2 с длиной ключа 128 бит. Поддержка стандарта WEP является обязательным условием для получения оборудованием сертификата соответствия требованиям Wi-Fi, благодаря чему обеспечивается совместимость устройств и при обмене зашифрованной информацией. В то же время производители оборудования добавляют в него дополнительно поддержку и иных алгоритмов шифрования, например LEAP с длиной ключа 128 бит.
Мощность, излучаемая передатчиком точки доступа или же клиентской станции, работающей по стандарту IEEE 802.11b, не превышает 0,1 Вт. Для сравнения - мощность, излучаемая мобильным телефоном, на порядок больше. Поскольку, в отличие от мобильного телефона, элементы сети расположены далеко от головы, в целом можно считать, что беспроводные компьютерные сети более безопасны с точки зрения здоровья, чем мобильные телефоны.
Если беспроводная сеть используется для объединения сегментов локальной сети, удаленных на большие расстояния, антенны, как правило, размещаются за пределами помещения и на большой высоте.
Заключение
Беспроводные
сети выглядят предпочтительнее сетей
проводных ввиду наличия
- Мобильность пользователей. Технология позволяет пользователям перемещаться внутри зоны охвата беспроводной сети без перерыва в пользовании ресурсами сети.
- Скорость и простота развертывания. В отличие от проводных систем передачи информации, беспроводные сети не требуют прокладки кабелей, занимающей, обычно, основное время при внедрении проводных сетей.
- Гибкость. Быстрая реструктуризация, изменение размеров и конфигурации сети, подключение новых пользователей.
- Сохранение инвестиций. Беспроводные сети удобно использовать, если необходимо развернуть сеть на небольшой отрезок времени или есть вероятность переезда.
- Возможность развертывания там, где нельзя воспользоваться кабельными сетями: наличие рек, озер, болот и т.д., развертывание сети на территории памятников архитектуры.
Но, как и у любой другой сложной технологии, у беспроводных компьютерных сетей есть не только положительные, но и отрицательные стороны. Одна из самых главных проблем - возможное наличие на пути радиоволн препятствий, что приходится учитывать при размещении точки доступа и клиентских станций. Металлические конструкции могут создавать отражения сигнала, создавая т.н. эффект многолучевого приема, когда на антенну, расположенную на приемной стороне, приходит несколько вариантов переданного сигнала, сдвинутых по фазе один относительно другого. Многолучевой прием значительно увеличивает коэффициент ошибок. Еще одна проблема - "свободный статус" диапазона 2,4 ГГц. В нем могут работать, например, генераторы микроволновых печей или медицинские приборы. Информацию, передаваемую по беспроводной сети, относительно легко перехватить. Да, сейчас используются алгоритмы, которые можно "вскрыть" прямым перебором, разве что используя суперкомпьютер. Но и производительность вычислительной техники растет с большой скоростью. Не исключено, что через несколько лет системы защиты информации, используемые в беспроводных компьютерных сетях, можно будет взломать, используя персональный компьютер. А вот на то, что за это время алгоритмы шифрования, разрешенные для массового применения, будут адекватно улучшены, надеяться не приходится, поскольку в США поставили перед миром вопрос об ограничении совершенствования массовых средств криптозащиты информации.