Современные представления о строении атомов

Автор: Пользователь скрыл имя, 30 Ноября 2011 в 19:03, реферат

Краткое описание

А́том (от др.-греч. ἄτομος — неделимый) — наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента.

Файлы: 1 файл

xe.doc

— 677.50 Кб (Скачать)

Введение: определение атома 

Основная  часть: современные представления  о строении атома 

Заключение: немного об ученых 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Определение атома 

А́том (от др.-греч. ἄτομος — неделимый) —  наименьшая химически неделимая  часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента. 
 

 История представлений о строении атома 

Впервые понятие “атом” (неделимый) было введено  греческим философом Демокритом в V веке до нашей эры. Он утверждал, что атомы существуют вечно; они настолько малы, что их размеры не поддаются измерению; все атомы одинаковы, но они различаются внешне (атомы воды, например, гладкие, они способны перекатываться, и поэтому жидкости свойственна текучесть; атомы железа имеют зубчики, которыми они зацепляются друг за друга, что придает железу свойства твердого тела). Представления Демокрита были умозрительными и мало полезными. 

В начале нглийский химик и физик Д. Дальтон вновь предположил, что вещества состоят из мельчайших частиц - атомов. Он установил, что атомы одного и того же химического элемента имеют одинаковые свойства, а разным элементам соответствуют разные атомы. Введена важнейшая характеристика атома - атомная масса. Атом также считался неделимой частицей. 

Однако  со временем эпериментальные доказательства сложной структуры атома: фотоэффект (явление, когда при освещении некоторых металлов с их поверхности испускаются носители электрического заряда), катодные лучи (поток отрицательно заряженных частиц - электронов из катода в вакуумированной трубке, содержащей катод и анод), рентгеновские лучи (электромагнитное излучение, подобное видимому свету, но с гораздо более высокой частотой, испускаемое веществами при сильном воздействии на них катодных лучей), радиоактивность (явление самопроизвольного превращения одного химического элемента в другой, сопровождающееся испусканием электронов, положительно заряженных частиц, других элементарных частиц и рентгеновского излучения). 

Таким образом, было установлено, что атомы  состоят из отрицательно и положительно заряженных частиц, сильно взаимодействующих между собой. Возник вопрос, как же устроен атом? 

Современные представления о  строении атома. 

Подтверждённая  экспериментально в 1927 г. двойственная природа электрона, обладающего  свойствами не только частицы, но и волны, побудила учёных к созданию новой теории строения атома, учитывающей оба этих свойства. Современная теория строения атома опирается на квантовую механику. 

Двойственность  свойств электрона проявляется  в том, что он, с одной стороны, обладает свойствами частицы (имеет определённую массу покоя), а с другой — его движение напоминает волну и может быть описано определённой амплитудой, длиной волны, частотой кол***ий и др. Поэтому нельзя говорить о какой-либо определённой траектории движения электрона — можно лишь судить о той или иной степени вероятности его нахождения в данной точке пространства.

Cледовательно, под электронной орбитой следует  понимать не определённую линию  перемещения электрона, а некоторую  часть пространства вокруг ядра, в пределах которого вероятность пребывания электрона наибольшая. Иными словами, электронная орбита не характеризует последовательность перемещения электрона от точки к точке, а определяется вероятностью нахождения электрона на определённом расстоянии от ядра. В связи с этим электрон представляют не в виде материальной точки, а как бы "размазанным" по всему объёму атома в виде так называемого электронного облака, имеющего области сгущения и разрежения электрического заряда. Представление об электроне как о некотором облаке электрического заряда удобно; оно довольно точно передаёт особенности поведения электрона. Однако следует иметь в виду, что электронное облако не имеет резко очерченных границ, и даже на большом расстоянии от ядра существует вероятность пребывания электрона. Для характеристики формы электронного облака понятие орбиталь вместо понятия орбита было введено именно для того, чтобы не смешивать движение электрона с движением тела в классической физике. Однако при упрощённом рассмотрении строения атома иногда сохраняют термин орбита, помня тем не менее об особом характере движения электрона в атоме.

По современным  представлениям состояние элетрона в атоме описывается четырьмя квантовыми числами. Главное квантовое  число n характеризует величину энергии электрона и может принимать только положительные целочисленные значения: 1, 2, 3 и т. д. С увеличением главного квантового числа энергия электрона возрастает. Состояние электрона, отвечающее определённому значению главного квантового числа, называют энергетическим уровнем электрона в атоме. Помимо энергии электрона главное квантовое число определяет размеры электронного облака: чем выше значение главного квантового числа, тем больше электронное облако. Электроны, характеризующиеся одним и тем же квантовым числом, имеют электронные облака приблизительно одинаковых размеров. Поэтому говорят о существовании в атоме электронных слоёв. Электронные слои обозначают большими буквами латинского алфавита K, L, M, N, O, причём K-слой является первым от ядра атома, ему соответствует главное квантовое число n = 1, L-слой — вторым, M-слой — третьим и т. д. Электроны, образующие данный слой, могут обладать несколько отличающейся друг от друга энергией и иметь орбитали различных форм. Из квантовомеханической теории следует, что с увеличением главного квантового числа n изменяются число и характер электронных орбиталей в пределах данного электронного слоя. Количество орбиталей для каждого значения n равно квадрату главного квантового числа (n2).

Второе  квантовое число l, описывающее форму электронного облака, называется орбитальным квантовым числом. При данном главном вантовом числе n орбитальное квантовое число l может принимать любые целочисленные значения от 0 до n–1. Соответствующие орбитали обозначаются строчными буквами латинского алфавита: s (l = 0), p (l = 1), d (l = 2), f (l = 3). Орбитальное квантовое число отображает энергию электрона на подуровне. Электроны с различными орбитальными квантовыми числами несколько отличаются друг от друга: их энергия тем выше, чем больше число l. Число возможных подуровней в каждом энергетическом уровне совпадает с порядковым номером электронного слоя, но фактически ни один энергетический уровень не содержит больше четырёх подуровней. Это справедливо для стационарного состояния атомов всех элементов. Так, первому энергетическому уровню соответствует s-подуровень; второму уровню — два подуровня: s и p; третьему уровню — три подуровня: s, p и d; четвёртому и следующим уровням —четыре подуровня: s, p, d и f.

Ориентацию  орбиталей в пространстве определяет третье квантовое число, называемое магнитным квантовым числом и обозначаемое m. При данном орбитальном квантовом числе l магнитное квантовое число m может принимать любые целочисленные значения от –l до +l, в том числе нулевое значение. Оно определяет число орбиталей в одном и том же электронном слое: одна s-орбиталь (m = 0), три p-орбитали (m равно –1, 0, +1), пять d-орбиталей (m равно –3, –2, –1, 0, +1, +2, +3). Орбитали с различными магнитными квантовыми числами, но с одинаковым главным и орбитальным квантовыми числами характеризуются одной и той же энергией. Магнитное квантовое число есть вектор, следовательно, ему соответствует не только определённое числовое значение, но и определённое направление, что выражается в знаках "+" и "–".

Четвёртое квантовое число, называемое спином и обозначаемое ms, раньше связывали  с вращением электрона вокруг своей оси, но теперь ему не придают  какого-либо наглядного образа и считают  чисто квантовомеханической величиной. Спин электрона может иметь два значения: +1/2 и –1/2. 
 
 
 

Строение  атомного ядра. Субатомные частицы. Элементы. Изотопы. 

Атом  состоит из ядра и окружающего  его электронного "облака". Находящиеся  в электронном облаке электроны  несут отрицательный электрический  заряд. Протоны, входящие в состав ядра, несут положительный заряд.

В любом  атоме число протонов в ядре в  точности равно числу электронов в электронном облаке, поэтому  атом в целом – нейтральная  частица, не несущая заряда.

Атом  может потерять один или несколько  электронов или наоборот – захватить чужые электроны. В этом случае атом приобретает положительный или отрицательный заряд и называется ионом.

Практически вся масса атома сосредоточена  в его ядре, так как масса  электрона составляет всего лишь 1/1836 часть массы протона. Плотность вещества в ядре фантастически велика – порядка 1013 - 1014 г/см3. Спичечный коробок, наполненный веществом такой плотности, весил бы 2,5 миллиарда тонн!

Внешние размеры атома – это размеры  гораздо менее плотного электронного облака, которое примерно в 100000 раз больше диаметра ядра.

Кроме протонов, в состав ядра большинства  атомов входят нейтроны, не несущие  никакого заряда. Масса нейтрона практически  не отличается от массы протона. Вместе протоны и нейтроны называются нуклонами (от латинского nucleus – ядро).

Электроны, протоны и нейтроны являются главными "строительными деталями" атомов и называются субатомными частицами. Их заряды и массы в кг и в  специальных “атомных” единицах массы (а.е.м.) показаны в таблице 1.

Таблица 1. Субатомные частицы.

Частица Заряд Масса:
    кг а.е.м.
Протон +1 1,67·10-27 1,00728
Нейтрон 0 1,67·10-27 1,00867
Электрон -1 9,11·10-31 0,000549
 

Частица

Заряд

Масса:    
 

кг

а.е.м.

Протон

+1

1,67·10-27

1,00728

Нейтрон

0

1,67·10-27

1,00867

Электрон

-1

9,11·10-31

0,000549

Из таблицы 1 видно, что массы субатомных частиц чрезвычайно малы. Показатель степени (например, десять в минус двадцать седьмой степени) показывает, сколько нулей после запятой нужно записать, чтобы получилась десятичная дробь, выражающая массу субатомной частицы в килограммах. Это ничтожнейшая часть килограмма, поэтому массу субатомных частиц удобнее выражать в атомных единицах массы (сокращенно – а.е.м.). За атомную единицу массы принята ровно 1/12 часть массы атома углерода, в ядре которого содержится 6 протонов и 6 нейтронов. Схематическое изображение такого "эталонного" атома углерода приведено на рис. 2 . Атомную единицу массы можно выразить и в граммах: 1 а.е.м. = 1,660540·10-24 г.

<>

Рис. 2. Атомы состоят из положительно заряженного ядра и электронного облака. а) В состав ядра атома водорода входит только 1 протон, а электронное облако заполняется одним электроном. б) В ядре атома углерода 6 протонов и 6 нейтронов, а в электронном облаке – 6 электронов. в) Существует также изотопный углерод, ядре которого на 1 нейтрон больше. Содержание этого изотопа в природном углероде составляет чуть более 1% (об изотопах см. ниже). Линейные размеры атомов очень малы: их радиусы составляют от 0,3 до 2,6 ангстрема (1 ангстрем = 10–8 см). Радиус ядра около 10–5 ангстрема, то есть 10–13 см. Это в 100000 раз меньше размеров электронной оболочки. Поэтому правильно показать относительные пропорции ядер и электронных оболочек на рисунке невозможно. Если бы атом увеличился до размеров Земли, то ядро имело бы всего около 60 м в диаметре и могло бы поместиться на футбольном поле.

Масса атома, выраженная в килограммах  или граммах, называется абсолютной атомной массой. Чаще пользуются относительной  атомной массой, которая выражается в атомных единицах массы (а.е.м.). Относительная атомная масса представляет собой отношение массы какого-нибудь атома к массе 1/12 части атома углерода. Иногда говорят более коротко: атомный вес. Последний термин вовсе не устаревший, как иногда пишут в учебниках – он широко используются в современной научной литературе, поэтому мы тоже будем его применять. Относительная атомная масса и атомный вес, фактически, безразмерные величины (масса какого-либо атома делится на массу части атома углерода), поэтому обозначение "а.е.м." после численного значения обычно опускают (но можно и написать, в этом не будет ошибки). Термины “относительная атомная масса”, “атомная масса”, “атомный вес” в научном химическом языке обычно используются равноправно и между ними просто не делают различий. В Международном союзе химиков (IUPAC) существует Комиссия по относительной распространенности изотопов и атомным весам (Commission on Isotopic Abundances and Atomic Weights или сокращенно – CIAAW), но не "Комиссия по относительным атомным массам". Однако все химики прекрасно понимают, что речь идет об одном и том же.

Информация о работе Современные представления о строении атомов