Шпаргалка по "Химии"

Автор: Пользователь скрыл имя, 22 Ноября 2012 в 17:13, шпаргалка

Краткое описание

Работа содержит 50 ответов на вопросы по дисциплине "Химия".

Файлы: 1 файл

ХИМИЯ ответы =).doc

— 341.50 Кб (Скачать)

Н2С=С=СН2, Н2С=СН—СН=СН2, HC≡CH.

 

13.Гибридизация  атомных орбиталей. Гибридизация s- и р-атомных орбиталей. Пространственное расположение гибридных атомных орбиталей при sp- гибридизации. Структура простейших молекул.

При рассмотрении ковалентных химических связей нередко  используют понятие о гибридизации орбиталей центрального атома - выравнивание их энергии и формы. Гибридизация является формальным приемом, применяемым для квантово-химического описания перестройки орбиталей в химических частицах по сравнению со свободными атомами. Сущность гибридизации атомных орбиталей состоит в том, что электрон вблизи ядра связанного атома характеризуется не отдельной атомной орбиталью, а комбинацией атомных орбиталей с одинаковым главным квантовым числом. Такая комбинация называется гибридной (гибридизованной) орбиталью. Как правило, гибридизация затрагивает лишь высшие и близкие по энергии атомные орбитали, занятые электронами.

sp3-гибридизация

происходит  при смешивании одной s- и трех p-орбиталей. Возникает четыре одинаковые орбитали, расположенные относительно друг друга под тетраэдрическими углами 109°28’

sp2-гибридизация

происходит  при смешивании одной s- и двух p-орбиталей . Образуется три гибридные орбитали с осями, расположенными в одной  плоскости и направленными к  вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей.

sp-гибридизация

происходит  при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные  орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны о ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях.

Простейшие  молекулы могут состоять из одного атома (например, молекулы благородных газов гелия, неона, аргона, криптона и ксенона). В отличие от молекул сортов атомов не так уж и много – около сотни.

 

14. Полярность  связей и молекул. Полярная  и неполярная связь. Электрический  момент диполя связи. Полярные  и неполярные молекулы. Факторы, влияющие на полярность молекул.

По распределению  электронной плотности между  связываемыми атомами ковалентная  связь делится на неполярную и  полярную. Неполярная связь образуется между одинаковыми атомами, полярная - между разными.  Ковалентная полярная связь – это связь между атомами с помощью общих электронных пар, при которой общие электронные пары смещены к атому более электроотрицательного элемента. Если электронная плотность расположена симметрично между атомами, ковалентная связь называется неполярной. Если электронная плотность смещена в сторону одного из атомов, то ковалентная связь называется полярной. Полярность связи тем больше, чем больше разность электроотрицательностей атомов.

В любой нейтральной  молекуле имеются центры тяжести  положительных  и отрицательных зарядов. Эти центры могут совпадать, т.е. находиться в одной точке, тогда молекула наз. неполярной, или не совпадать – и тогда молекула является полярной. Неполярными являются двухатомные молекулы, состоящие из одинаковых атомов, например, Н2  или СL2,  поскольку электроны ковалентных связей  в них равномерно распределены между двумя атомами. В молекуле, состоящей из двух различных атомов, например, H-CL, связывающие  электроны  сдвинуты к более электроотрицательному атому, в результате чего на атомах возникают эффективные электрические заряды   +δ, -δ. Электрические заряды  атомов  в таких полярных молекулах намного меньше, чем элементарный электрический заряд. Таким образом, в полярной молекуле имеются 2 центра или 2 полюса  зарядов, и возникло  название такой молекулы - диполь. Электрическим  моментом диполя связи наз. произведение абсолютного значения  заряда электрона q на расстояние между центрами положительного и отрицательного зарядов  или длину диполя l. Электрический момент диполя двухатомной молекулы = электрическому моменту диполя связи. Электрический момент диполя многоатомной  молекулы, /т.е. как векторная  величина/, = геометрической сумме электрических  моментов диполей входящих в нее связей. Результат сложения зависит от структуры молекулы. По электрическим моментам молекул можно получить данные о структуре молекул. Чем сильнее различаются два атома одной связи по своей электроотрицательности, тем больше электрический момент диполя связи, тем полярнее связь.

Полярные  молекулы, молекулы, обладающие постоянным дипольным моментом в отсутствие внешнего электрического поля. Дипольный момент присущ таким молекулам, у которых распределение электронного и ядерного зарядов не имеет центра симметрии. Обычно полярность отдельных фрагментов молекулы или хим. связей между двумя атомами (или большим числом атомов) определяется величиной соответствующего дипольного момента: чем он больше, тем сильнее полярность.

Под влиянием внеш. электрич. поля вещество поляризуется, т.е. в нем возникает дипольный момент единицы объема. У веществ, состоящих из П. м., поляризация обусловлена смещением электронной плотности под влиянием поля и ориентацией молекул в поле. Ориентации молекул препятствует тепловое движение, поэтому изучение зависимости поляризации от температуры позволяет определять дипольный момент молекул.

 

15. Понятие  о методе молекулярных орбиталей.  Атомная и молекулярная орбитали. Связывающие и разрыхляющие орбитали. Правила и порядок заполнения молекулярных орбиталей. Электронная формула молекулы. Порядок связи.

Метод молекулярных орбиталей исходит из того, что  каждую молекулярную орбиталь представляют в виде алгебраической суммы (линейной комбинации) атомных орбиталей. Например, в молекуле водорода в образовании  МО могут участвовать только 1s атомные орбитали двух атомов водорода, которые дают две МО, представляющие собой сумму и разность атомных орбиталей. При использовании метода молекулярных орбиталей считается, в отличие от метода валентных связей, что каждый электрон находится в поле всех ядер. При этом связь не обязательно образована парой электронов. Например, ион Н2+ состоит из двух протонов и одного электрона. Между двумя протонами действуют силы отталкивания, между каждым из протонов и электроном - силы притяжения. Химическая частица образуется лишь в том случае, если взаимное отталкивание протонов компенсируется их притяжением к электрону. Это возможно, если электрон расположен между ядрами - в области связывания. В противном случае силы отталкивания не компенсируются силами притяжения - говорят, что электрон находится в области антисвязывания, или разрыхления.

Молекулярные  орбитали - волновые функции электрона в молекуле или другой многоатомной химической частице. Каждая молекулярная орбиталь (МО), как и атомная орбиталь (АО), может быть занята одним или двумя электронами. Состояние электрона в области связывания описывает связывающая молекулярная орбиталь, в области разрыхления - разрыхляющая молекулярная орбиталь. Распределение электронов по молекулярным орбиталям происходит по тем же правилам, что и распределение электронов по атомным орбиталям в изолированном атоме. Молекулярные орбитали образуются при определенных комбинациях атомных орбиталей. Их число, энергию и форму можно вывести исходя из числа, энергии и формы орбителей атомов, составляющих молекулу. Молекулярная орбиталь - область наиболее вероятного пребывания электрона в электрическом поле двух (или более) ядер атомов, составляющих молекулу.

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Заполнение  молекулярных орбиталей происходит в соответствии с принципом наименьшей энергии и принципом Паули, по два электрона размещаются на а- и по четыре на вырожденных я- и 8-орбиталях. Порядок, в котором возрастают энергии МО, устанавливается при исследовании молекулярных спектров и другими экспериментальными методами, а также при помощи квантовомеханических расчетов.

Для изображения  электронного строения молекул, ионов  или радикалов используются электронные формулы. При написании электронной формулы должно выполняться правило октета, согласно которому атом, участвуя в образовании химической связи (отдавая или принимая электроны), стремится приобрести электронную конфигурацию инертного газа - октет (восемь) валентных электронов. Исключение составляет атом водорода, для которого устойчивой является конфигурация гелия, т.е. 2 валентных электрона.

Чем выше кратность  связи, тем короче межатомное расстояние. Связь может быть одинарной либо кратной (двойной, тройной и т.д.).

 

16.Химическая  связь в твердых телах. Понятие  о зонной теории связи. Проводники, полупроводники и диэлектрики.

Зонная  теория - это квантовомеханическая модель, учитывающая наиболее важные особенности движения электронов в кристалле. Зонная теория основанна на 3-х предположениях ("зонное приближение"):

Атомные ядра, ввиду  их большой массы, рассматриваются  как неподвижные источники поля, действующего на электроны. Расположение ядер в пространстве строго периодично: они размещаются в узлах идеальной решетки данного кристалла.

Электроны рассматриваются  как "независимые". Каждый "независимый" электрон взаимодействует с эффективным  внешним полем, которое складывается из поля атомных ядер и поля остальных  электронов.

В зонной теории обычно пользуются понятием "атомный остов", которое заменяет понятие "атомное ядро". "Атомный остов" - это ядро атома вместе с внутренними (не валентными) электронными оболочками. Возникает вопрос: почему эта замена оправдана? Дело в том, что в большинсте электрических, магнитных и оптических явлений в твердых телах электроны внутренних оболочек не участвуют, поскольку энергия их связи с ядром составляет десятки и сотни электронвольт, что значительно больше средней энергии взаимодействия с внешними полями. Таким образом, в зонной теории играют роль лишь валентные электроны внешних оболочек.

Зонная теория твёрдого тела — раздел квантовой  механики, рассматривающий движение электронов в твёрдом теле. Свободные  электроны могут иметь любую  энергию — их энергетический спектр непрерывен. Электроны, принадлежащие изолированным атомам, имеют определённые дискретные значения энергии. В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешенных зон, разделённых зонами запрещенных энергий. В металле существуют так называемые запрещенные зоны - некоторые области значений, которые не может принимать энергия электрона.

Проводник — вещество, проводящее электрический ток. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, и примером проводящих жидкостей — электролиты. Некоторые вещества при нормальных условиях являющиеся изоляторами при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п.

Полупроводник — материал, электрические свойства которого в сильной степени зависят от концентрации в нём химических примесей и внешних условий (температура, излучение и пр.).

Полупроводники – вещества, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения.

Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток. Основное свойство диэлектрика состоит в способности электризоваться во внешнем электрическом поле. К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком. Диэлектрики используются не только как изоляционные материалы. Ряд диэлектриков проявляют интересные физические свойства.

 

17.Силы межмолекулярного  взаимодействия. Ориентационное, индукционное и дисперсионное взаимодействие. Водородная связь. Энергия межмолекулярного взаимодействия.

Межмолекулярное взаимодействие — взаимодействие между  электрически нейтральными молекулами или атомами. Межмолекулярное взаимодействие - взаимодействие молекул между собой, не приводящее к разрыву или образованию новых химических связей. В их основе, как и в основе химической связи, лежат электрические взаимодействия.

Ориентационное  взаимодействие. Полярные молекулы, в которых центры тяжести положительного и отрицательного зарядов не совпадают, например HCl, H2O, NH3, ориентируются таким образом, чтобы рядом находились концы с противоположными зарядами. Между ними возникает притяжение. Притяжение диполь-диполь может осуществляться только тогда, когда энергия притяжения превышает тепловую энергию молекул; обычно это имеет место в твердых и жидких веществах. Диполь-дипольное взаимодействие проявляется в полярных жидкостях (вода, фтороводород).

Индукционное  взаимодействие. Если рядом с полярная молекула окажется полярная рядом с неполярными, она начнет влиять на них. Поляризация нейтральной частицы под действием внешнего поля (наведение диполя) происходит благодаря наличию у молекул свойства поляризуемости γ. Постоянный диполь может индуцировать дипольное распределение зарядов в неполярной молекуле. Под действием заряженных концов полярной молекулы электронные облака неполярных молекул смещаются в сторону положительного заряда и подальше от отрицательного. Неполярная молекула становится полярной, и молекулы начинают притягиваться друг к другу, только намного слабее, чем две полярные молекулы. Притяжение постоянного и наведенного диполей обычно очень слабое, поскольку поляризуемость молекул большинства веществ невелика. Оно действует только на очень малых расстояниях между диполями. Этот вид взаимодействия проявляется главным образом в растворах полярных соединений в неполярных растворителях.

Информация о работе Шпаргалка по "Химии"