Осушка природного и нефтяного газа. Способы осушки

Автор: Пользователь скрыл имя, 18 Марта 2012 в 15:29, реферат

Краткое описание

Начиная со второй половины ХХ в. газовая промышленность становится наиболее быстро развивающейся отраслью топливно-энергетического комплекса. Продукция этой отрасли обеспечивает потребность всей промышленности (около 45% общего народнохозяйственного потребления), тепловой электроэнергетики (35%), коммунального бытового хозяйства (более 10%). Газ – самое экологически чистое природное топливо и ценное сырье для производства химической продукции. За последние десятилетия мировое потребление природного газа росло более высокими темпами по сравнению с другими видами энергии.

Оглавление

Введение
Теоретическая часть
Методы осушки
1. Абсорбционный метод
1.1 Основы процесса
1.2 Физическая и химическая абсорбция
1.3 Применение абсорбционной очистки
1.4 Недостатки и преимущества абсорбционного метода очистки газов
2. Адсорбционный и хемосорбционный метод
2.1 Основные понятия
2.2 Активные угли
2.3 Силикагели
2.4 Алюмогели
2.5 Цеолиты
2.6 Иониты
Заключение
Список использованной литературы

Файлы: 1 файл

Реферат.docx

— 45.61 Кб (Скачать)
"text-align:justify">2 м2/г, что предопределяет ничтожную величину адсорбции на их стенках. Капиллярная конденсация в этих порах отсутствует. Макро- и переходные поры выполняют роль транспортных путей, обеспечивающих при адсорбции доступ поглощаемых молекул в микропоры и эвакуацию адсорбата при регенерации адсорбента.

Основные  типы промышленных адсорбентов являются смешаннопористыми материалами, однако в соответствии с преобладающим в их структуре размером пор они могут подразделяться на микро-, переходно- и макропористые.

Пористые  адсорбенты характеризуют величинами истинной, кажущейся и насыпной (гравиметрической) плотности. Истинная плотность ρи выражает массу единицы объема плотного (без пор) вещества адсорбента:

         где G — масса адсорбента;

V1 — объем адсорбента с учетом пор;

V2 — объем пор.

Кажущаяся плотность  рк выражает массу гранулы адсорбента, отнесенную к ее объему. Насыпная плотность рн гранул адсорбента выражает массу единицы объема их слоя. Насыпная и кажущаяся плотности связаны с пористостью (порозностью) слоя адсорбента ε, выражающей долю свободного объема слоя, соотношением:

          Следовательно,

          

          Аналогичное выражение определяет пористость ε' гранул (зерен) адсорбента:

          Величину пористости слоя определяют форма гранул адсорбента и характер их расположения (упаковки) в слое. Форма гранул промышленных адсорбентов обычно не является шаровидной, поэтому в соответствующих расчетах используют величину эквивалентного диаметра dэ:

          

           где Sv — удельная геометрическая поверхность единицы объема, представляющая отношение величины поверхности гранул к их объему V'.

К основным типам промышленных адсорбентов  относятся активные угли, силикагели, алюмогели (активный оксид алюминия), цеолиты и иониты.

 

2.2 Активные угли

 

Активные  угли характеризуются гидрофобностью (плохой сорбируемостью полярных веществ, к которым принадлежит и вода). Это свойство определяет широкое их использование в практике рекуперационной и санитарной очистки отходящих газов разнообразной влажности.

Для адсорбции  газов и паров используют микропористые  гранулированные активные угли. С  этой целью промышленность выпускает  в настоящее время следующие  марки газовых и рекуперационных активных углей: АГ-2, СКТ, АР, СКТ-3, АРТ. Угли АГ-2 (марок А и Б) и АР (марок АР-А, АР-Б, АР-В) получают из каменноугольной пыли и смолы методом парогазовой активации. Уголь СКТ синтезируют из торфа, а угли СКТ-3 и АРТ (марок АРТ-1 и АРТ-2)- из торфа и каменноугольной пыли методом химической активации. Угли АГ-2 предназначены для адсорбции газов, уголь СКТ — для улавливания паров органических веществ, угли АР, СКТ-3 и АРТ- для очистки газов от паров летучих растворителей. Активные угли для газоочистки характеризуются объемом микропор в пределах 0,24— 0,48 см3 /г при суммарном объеме пор 0,52 - 1,00 см3 /г, гравиметрическая плотность их гранул составляет 0,3 - 0,6 г/см3. Теплоемкость сухого угля - 0,84 кДж/(кг*К), теплопроводность при 30°С— 0,17— 0,28 Вт/(м*К).

Активные  угли производят в виде цилиндрических гранул диаметром 1-6 мм и длиной, обычно превосходящей поперечный размер гранул, и чаще всего применяют в виде стационарного слоя, через который  фильтруют подлежащий очистке газовый  поток. В соответствии с действующими стандартами и технологическими условиями размер поперечника гранул углей может изменяться в определенных пределах. В этой связи в отдельных  случаях с целью интенсификации соответствующих процессов гранулированные угли перед использованием подвергают дроблению и классификации с выделением необходимых узких фракций. Существенными недостатками активных углей являются относительно невысокая механическая прочность и горючесть.

Значительный  интерес применительно к решению  задач газоочистки в последнее  время вызывают такие нетрадиционные углеродные адсорбенты, как активные угли из полимерных материалов, молекулярно-ситовые  активные угли и активированные углеродные волокна.

Производимые  из полимерных материалов активные угли характеризуются развитой системой микропор с диаметром (1—1,5)*10-9 м, более регулярной структурой, обеспечивающей определенное улучшение прочностных характеристик, и повышенной адсорбционной активностью при низких содержаниях целевых компонентов в очищаемых газах.

Молекулярно-ситовые  активные угли отличаются высокой однородностью  микропористой структуры и обладают микропорами еще более узких  размеров [(0,4—0,7) * 10-9 м], имеющих тот же порядок, что и размеры молекул. Перспективным направлением их использования полагают очистку влажных газов.

Активированные  углеродные волокна представляют собой изготовляемые из синтетических волокон микропористые адсорбенты с Широкой гаммой физических форм продукции на их основе (путанка, нетканые изделия, войлок, ткань и другие материалы), обеспечивающей разнообразность аппаратурного оформления соответствующих процессов газоочистки. Наряду с высокой термохимической стойкостью и хорошими поглотительными и фильтрующими свойствами волокнистые углеродные адсорбенты ввиду весьма малых диаметров их волокон, составляющих (0,6—1,0)*10-5 м, характеризуются повышенными скоростями адсорбционно - десорбционных процессов.

 

         2.3 Силикагели

 

Силикагели  по своей химической природе представляют собой гидратированные аморфные кремнеземы (SiO2*nН2О), являющиеся реакционноспособными соединениями переменного состава, превращения которых происходят по механизму поликонденсации:

 

nSi(ОН)4 → SinO2n-m +(2n-m)Н2O.

 

Поликонденсация ведет к формированию структурной  сетки сфероподобных частиц коллоидных размеров (2*10-9-2*10-8 м), сохраняющейся при высушивании гидрогеля кремневой кислоты и образующей жесткий кремнекислородный каркас. Зазоры между частицами образуют пористую структуру силикагеля. Для получения силикагелей в промышленности обычно используют метод осаждения аморфного кремнезема из силикатов щелочных металлов минеральными кислотами. Выпускают силикагель в виде шариков, таблеток или кусочков неправильной формы. Размеры их зерен составляют от 0,1 до 7,0 мм. Адсорбционные и химические свойства силикагелей существенно зависят от наличия на их поверхности групп ≡ Si—ОН.

По характеру  пористой структуры силикагеля классифицируют на крупно-, средне- и мелкопористые, к которым относят кусковые и  гранулированные материалы, характеризующиеся  средним радиусом пор, составляющим соответственно ≈5*10-9, (5-1,5)*10-9 и (1,5-1,0)* 10-9 м. По размеру зерен кусковые силикагели широкого использования делят на 4 марки (7,0- 2,7; 3,5-1,5; 2,0-0,25; 0,5-0,2 мм), а гранулированные — на 2 марки (7,0- 2,7 и 3,5-1,0 мм).

Для их обозначения  используют буквенные сочетания:

КСК —  крупный силикагель крупнопористый,

КСС —  крупный силикагель срсднепористый,

МСМ —  мелкий силикагель мелкопористый и  т. п.

Средние фракции силикагелей называют шихтой и обозначают соответственно как  ШСК, ШСС и ШСМ. Гранулированный  мелкопористый силикагель содержит 4—10% Аl2O3 в качестве добавки, предупреждающей растрескивание его гранул.

Объем пор  силикагелей составляет 0,3-1,2 см3 /г, их удельная поверхность находится в пределах 300-750 м3 /г, а гравиметрическая плотность заключена в интервале 0,4-0,9 г/см3. Последний показатель может служить косвенной характеристикой пористой структуры силикагелей: для мелкопористых силикагелей он составляет 0,7-0,8 г/см3, а для крупнопористых - 0,4 - 0,5 г/см3. Теплоемкость силикагелей — 0,92 кДж/(кг-К), теплопроводность при 30 °С равна 0,11 кДж/(м*ч*К).

Силикагели служат для поглощения полярных веществ. Мелкопористые силикагели используют для адсорбции легкоконденсируемых паров и газов, крупнопористые и частично среднепористые силикагели служат эффективными поглотителями паров органических соединений. Высокое сродство поверхности силикагелей к парам воды обусловливает широкое их использование, а качестве агентов осушки разнообразных газовых сред. Силикагели негорючи и характеризуются низкой температурой регенерации (110—200 °С) и достаточно высокой механической прочностью. В то же время они разрушаются под действием капельной влаги, что необходимо учитывать при их использовании в системах газоочистки.

 

1.4 Алюмогели

 

Алюмогель (активный оксид алюминия Аl2О3*nН2О, где 0<n<0,6) получают прокаливанием различных гидроксидов алюминия. При этом в зависимости от типа исходного гидроксида, наличия в нем оксидов щелочных и щелочно-земельных металлов, условий термической обработки и остаточного содержания влаги получают различные по структуре типы алюмогеля. Его промышленные сорта обычно содержат γ-Al2O3 и реже χ-А12O3 и другие модификации Al2O3. Их щелевидные или бутылкообразные поры образованы первичными кристаллическими частицами размером (3-8) *10-9 м.

Основные  марки выпускаемого отечественной  промышленностью активного оксида алюминия представляют собой цилиндрические гранулы диаметром 2,5-5,0 мм и длиной 3-7 мм, а также шариковые гранулы  со средним диаметром 3-4 мм. Удельная поверхность алюмогелей составляет 170-220 м2/г, суммарный объем пор находится в пределах 0,6-1,0 см3/г, средний радиус пор и гравиметрическая плотность гранул цилиндрической и шариковой формы составляют соответственно (6-10)*10-9 и (3-4)*10-9 м и 500-700 и 600-900 кг/м3. В отличие от силикагелей алюмогели стойки к воздействию капельной влаги. Их используют для улавливания полярных органических соединений и осушки газов.

Цеолиты представляют собой алюмосиликаты, содержащие в своем составе оксиды щелочных и щелочно-земельных металлов и характеризующиеся регулярной структурой пор, размеры которых соизмеримы с размерами молекул, что определило и другое их название - «молекулярные сита». Общая химическая формула цеолитов Ме2/nО*Аl2О3*xSiO2*yН2О, (где Ме—катион щелочного металла, n-его валентность). Кристаллическая структура (алюмосиликатный скелет) цеолитов образована тетраэдрами SiO4 и А1O4, их избыточный отрицательный заряд компенсирован положительным зарядом катионов соответствующих металлов. Катионы цеолитов в определенных условиях их обработки могут замещаться на соответствующие катионы контактируемых с ними растворов, что позволяет рассматривать цеолиты как катионообменники. Поглощение вещества происходит в основном в адсорбционных полостях цеолитов, соединяющихся друг с другом входными окнами строго определенных размеров. Проникать через окна могут лишь молекулы, критический диаметр которых (диаметр по наименьшей оси молекулы) меньше диаметра входного окна.

Цеолиты получают синтетическим путем и добывают при разработке природных месторождений. Среди многих десятков различных синтетических цеолитов в решении задач газоочистки в основном используют производимые в промышленных масштабах цеолиты общего назначения марок NаА, СаА, СаХ, МаХ, характеризующиеся диаметром входного окна, составляющим в ангстремах (1 Å=10-9 м) соответственно 4, 5, 8 и 9. Первый индекс марки цеолита характеризует его обменный катион. Второй индекс обозначает тип кристаллической решетки цеолита-А или X, причем цеолиты с решеткой типа Х характеризуются входными окнами большего размера, чем таковые с решеткой типа А. Синтетические цеолиты выпускаются промышленностью в виде цилиндрических и шарообразных гранул, диаметр которых обычно составляет 2-5 мм, производимых с применением связующего материала (10—20% глины) или без него (в последнем случае механическая прочность гранул выше).

абсорбционный очистка газ уголь

2.5 Цеолиты

 

Цеолиты обладают наибольшей адсорбционной  способностью по парам полярных соединений я веществ с кратными связями в молекулах.

Цеолит  NаА может адсорбировать большинство компонентов промышленных газов, критический диаметр молекул которых не превышает 4*10-9м.

К таким  веществам относятся Н2S, СS2, СО2, NН3, низшие диеновые и ацетиленовые углеводороды, этан, этилен, пропилен, органические соединения, содержащие в молекуле одну метильную группу, а при низких температурах сорбции также СН4, Nе, Аr, Кr, Хе, О2, N2, СО. Пропан и органические соединения с числом атомов углерода в молекуле более трех этим цеолитом не адсорбируются.

Цеолит  СаА характеризуется повышенной стойкостью в слабокислой среде, что предопределяет возможность его использования в процессах декарбонизации и сероочистки газов. Этот цеолит способен адсорбировать углеводороды и спирты нормального строения.

Цеолиты типа Х адсорбируют все типы углеводородов, органические сернистые, азотистые  и кислородные соединения, галоидозамещенные углеводороды, пента- и декаборан. При полном замещении катиона натрия на катион кальция цеолит СаХ в отличие от цеолита NaХ не адсорбирует ароматические углеводороды и их производные с разветвленными радикалами.

Из природных  цеолитов, в том числе высококремнистых кислотостойких форм известны клиноптилолит, морденит, эрионит. Содержание собственно цеолитов в некоторых месторождениях достигает 80—90%, а в отдельных случаях превосходит и эти величины. С разрабатываемых месторождений природные цеолиты поступают в виде образованных зернами неправильной формы фракций определенных размеров, получаемых дроблением и последующей классификацией соответствующих цеолитсодержащих пород. Однако присутствие в природных цеолитах различных примесей и сопутствующих пород, а также трудность обогащения сдерживают сколь-либо значительное их использование для решения задач очистки отходящих газов в промышленных условиях.

Цеолиты, так же, как силикагели и активный оксид алюминия, характеризуются  значительной сорбционной способностью по парам воды. Наряду с этим цеолиты  отличаются сохранением достаточно высокой активности по соответствующим  целевым компонентам при относительно высоких (до 150— 250 °С) температурах. Однако по сравнению с другими типами промышленных адсорбентов они имеют  относительно небольшой объем адсорбционных  полостей, вследствие чего характеризуются  сравнительно небольшими предельными  величинами адсорбции. Гравиметрическая плотность синтетических цеолитов составляет 600-900 кг/м3.

Информация о работе Осушка природного и нефтяного газа. Способы осушки