Автор: Пользователь скрыл имя, 18 Января 2013 в 18:25, реферат
Кислород в своих соединениях проявляет, как правило, валентность равную двум. Но в принципе он может быть и четырех валентен, так как на внешнем слое кислород имеет 2 неспаренных электрона и 2 неподеленные электронные пары. Но поскольку атом кислорода имеет маленькой размер, то максимальная валентность кислорода равна трем, так как вокруг него может разместиться только три атома водорода.
Общая характеристика элементов VI A подгруппы
К главной подгруппе VI группы периодической системы относятся кислород, сера, селен, теллур и полоний. Неметаллические свойства у элементов VI-А группы выражены менее ярко, чем у галогенов. Валентными уних являются электроны ns2 np4
Так как атомы элементов VI-А группы содержат на внешнем слое шесть электронов, то они стремятся к заполнению электронами внешнего энергетического уровня и для них характерно образование анионов Э2-.К образованию катионов атомы рассматриваемых элементов (кроме полония) несклонны. Кислород и сера – типичные неметаллы, причем кислород относится к самым электроотрицательным элементам (на втором месте после фтора). Полоний – металл серебристо-белого цвета, напоминающий по физическим свойствам свинец, а по электрохимическим свойствам – благородные металлы. Селен и теллур занимают промежуточное положение между металлами и неметаллами, они являются полупроводниками. По химическим свойствам они стоят ближе к неметаллам. Кислород, серу, селен и теллур объединяют в группу "халькогенов", что в переводе с греческого языка означает "порождающие руды". Эти элементы входят в состав многочисленных руд. От кислорода к теллуру содержание элементов на Земле резко падает. Полоний не имеет стабильных изотопов и встречается в урановых и ториевых рудах, как один из продуктов распада радиоактивного урана.
По своим свойствам кислород
и сера резко отличаются друг от
друга, т.к. электронные оболочки
предыдущего энергетического
Кислород в своих соединениях проявляет, как правило, валентность равную двум. Но в принципе он может быть и четырех валентен, так как на внешнем слое кислород имеет 2 неспаренных электрона и 2 неподеленные электронные пары. Но поскольку атом кислорода имеет маленькой размер, то максимальная валентность кислорода равна трем, так как вокруг него может разместиться только три атома водорода.
Кислород и его соединения
Свойства кислорода. Кислород О2 – газ без цвета, запаха и вкуса. Плохо растворим в воде: при 20оС в 100 объемах воды растворяется около 3 объемов кислорода. Жидкий кислород имеет светло-голубой цвет, он притягивается магнитом, так как его молекулы парамагнитны, имеют два неспаренных электрона. Энергия связи в молекуле О2 равна 493 кДж/моль, длина связи 0,1207 нм, порядок связи в молекуле равен двум. В природе кислород существует в виде трех изотопов16О, 17О, 18О и в виде двух аллотропных модификаций кислорода О2 и озона О3. В воздухе кислорода в свободном состоянии содержится около 21%.
Получение кислорода. В лаборатории кислород получают разложением соединений, богатых кислородом: а) 2 KClO3 = 2 KCl + 3 O2 (катализатор – MnO2) б) 2 KMnO4 = O2 + K2MnO4 + MnO2 в) Н2О2 = 2 Н2О + О2 (катализатор – MnO2) г) электролизом водных растворов кислородсодержащих кислот и щелочей с инертным анодом. В промышленности кислород получают разделением жидкого воздуха в ректификационных колоннах.
ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА
Термодинамика – наука о взаимопревращениях различных форм энергии и законах этих превращений. Термодинамика базируется только на экспериментально обнаруженных объективных закономерностях, выраженных в двух основных началах термодинамики.
Термодинамика изучает:
1. Переходы энергии из одной формы в другую, от одной части системы к другой;
2. Энергетические эффекты, сопровождающие различные физические и химические процессы и зависимость их от условий протекания данных процессов;
3. Возможность, направление и пределы самопроизвольного протекания процессов в рассматриваемых условиях.
Необходимо отметить, что классическая термодинамика имеет следующие ограничения:
1. Термодинамика не рассматривает внутреннее строение тел и механизм протекающих в них процессов;
2. Классическая термодинамика изучает только макроскопические системы;
3. В термодинамике отсутствует понятие "время".
ОСНОВНЫЕ ПОНЯТИЯ ТЕРМОДИНАМИКИ
Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.
Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).
Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.
Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.
Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.
Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.
Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.
Компонентами системы называются индивидуальные вещества, которые, будучи взяты в наименьшем количестве, достаточны для описания (образования) всех фаз системы. выделение компонентов обусловлено конкретным содержанием системы и зависит от тех химических реакций, которые протекают внутри системы и при ее взаимодействии с внешней средой.В сложных минеральных системах в качестве компонентов обычно выступают окислы или элементы .
Параметрами называются величины, при помощи которых может быть описано состояние системы. Фундаментальные параметры систем: температура (Т), энтропия (S), давление (р), объем (V), массы компонентов (ma...mk) и их химические потенциалы (μa...μk).
Экстенсивными называются парам
Существует примечательное
свойство термодинамических параметров,
которое можно назвать
Первое начало термодинамики представляет собой закон сохранения энергии, один из всеобщих законов природы:Энергия неуничтожаема и несотворяема; она может только переходить из одной формы в другую в эквивалентных соотношениях.
Первое начало термодинамики представляет собой постулат
Полная энергия изолированной системы постоянна;
Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии).
Первое начало
термодинамики устанавливает
Внутренняя энергия является функцией состояния; это означает, что изменение внутренней энергии ΔU не зависит от пути перехода системы из состояния 1 в состояние 2 и равно разности величин внутренней энергии U2 и U1 в этих состояниях:
Изохорическийй процесс (V = const; ΔV = 0).поглощение или выделение тепла связано только с выделением Е
Изотермический процесс (Т = const).это процесс квазистатического расширения или сжатия вещества, находящегося в контакте с тепловым резервуаром.
, Q =A
Изобарический процесс (Р = const).
Адиабатический процесс (Q = 0).Это процесс квазистатического расширения или сжатия газа в сосуде с теплонепроницаемыми оттенками. А=- U
ВНУТРЕННЯЯ ЭНЕРГИЯ термодинамич. ф-ция состояния системы,
ее энергия, определяемая внутр. состоянием.
Внутренняя энергия складывается в осн.
из кинетич. энергии движения частиц (атомов, молекул, ионов, элект
При изотермическом процессевнутренняя энергия идеального газа не меняется. Все переданное газу количество теплоты идет на совершение работы:Q = A
Изменение внутренней энергии при изобарном процессе:ΔU=3/2 ·v·R·ΔT.
изменение внутренней энергии при адиабатном :Q=m·CpD·T/m.
Энтальпия-величина, пропорциональна кол-ву в-ва и измеряется в [КДж/моль] Н<0-экзотермический, Н>0 эндотермический.
При взаимодействии газообр. в-в образуется Н2О, которая может находится в различных состояниях.
Стандартное состояние энтальпий Т=298К, Р=101,325кПа
Информация о работе Общая характеристика элементов VI A подгруппы