Автор: Пользователь скрыл имя, 13 Февраля 2013 в 18:55, реферат
Широкое распространение пластмасс — одна из отличительных черт нашего времени. Фактически все натуральные волокна, смолы и материалы уже имеют сейчас свои искусственные заменители. Создано множество других веществ с такими свойствами, которые не встречаются в природе. И это, по-видимому, только начало грандиозного переворота, равного по своему значению великим материальным революциям прошлого — освоению бронзы и железа.
Введение. Общие сведения о пластмассах.
Классификация пластмасс.
Реактопласты.
Классификация реактопластов. Области применения.
Методы переработки реактопластов.
Список литературы.
Словарь.
Российский химико-
им. Д. И. Менделеева.
Кафедра материаловедения и защиты от коррозии.
КУРСОВАЯ РАБОТА
Методы переработки
Москва
2013
Содержание
Введение.
Широкое распространение пластмасс — одна из отличительных черт нашего времени. Фактически все натуральные волокна, смолы и материалы уже имеют сейчас свои искусственные заменители. Создано множество других веществ с такими свойствами, которые не встречаются в природе. И это, по-видимому, только начало грандиозного переворота, равного по своему значению великим материальным революциям прошлого — освоению бронзы и железа.
Пластмассы (пластики) представляют собой органические материалы на основе полимеров, способные при нагреве размягчаться и под давлением принимать определенную устойчивую форму. Простые пластмассы состоят из одних химических полимеров. Сложные пластмассы помимо полимеров включают добавки: наполнители, пластификаторы, красители,отвердиватели, катализаторы и др.
Наполнители в пластмассы вводят в количестве 40-70% для повышения твердости, прочности, жесткостиа так же придания особых специфических свойств, например фрикционных, антифрикционных и др. Наполнителями могут быть ткани, а так же порошкообразные, волокнистые вещества.
Пластификаторы (стеарин, олеиновая кислота, дибутилфталат) повышают эластичность, пластичность и облегчают обработку пластмасс. Их содержание колеблется в пределах 10-20%.
Отвердители (амины) и катализаторы
(перекисные соединения) в количестве
нескольких процентов вводят в пластмассы
для отверждения, т. е. создания межмолекулярных
связей и встраивания молекул
отвердителя в общую
Красители (минеральные пигменты,
спиртовые растворы органических красок)
придают пластмассам
Классификация пластмасс.
Пластмассы классифицируются по следующим признакам:
Твердые наполнители в виде порошков, например графит, древесная мука, кварц, гипс и др., волокон, например очесов хлопка и льна, волокон из стекла и асбеста, слоистые, например тканей хлопчатобумажной, стеклянной, асбестовой, бумаги.
Термореактивные пластмассы на основе термореактивных полимеров (смол) после тепловой обработки – отверждения – переходят в термостабильное состояние. Термореактивные пластмассы отличаются хрупкостью, имею большую усадку 10-15% и содержат в своем составе наполнители.
Один и тот же пластик
часто обладает свойствами, характерными
для нескольких групп. Например, текстолит
может быть одновременно конструкционным,
электроизоляционным и
Реактопласты.
Основу всякого реактопласта
составляет химически затвердевающая
термореактивная смола –
Классификация реактопластов.
Фенопласты (бакелиты, феноло-формальдегидные смолы) являются термоупрочняемыми пластмассами. Неупрочненные смолы получают при поликонденсации фенола с формальдегидом. Существует два основных типа феноло-формальдегидных смол: новолаки и резолы.
Для получения пластмассы с хорошими потребительскими свойствами в новолаки добавляют субстанцию (обычно уротропин), которая при нагревании разлагается с выделением формальдегида. Формальдегид, добавляемый к новолаковой смоле, образует упрочняющиеся гидроксиметильные группы.
Упрочнение термопластов в основном проводится в интервале температур 140 – 180°С, но благодаря соответствующим добавкам кислот некоторые резолы можно отвердить уже при 25°С и выше.
Резолы получают в спиртовых средах, применяя избыток формальдегида. Продукт содержит гидроксиметиленовые группы. Во время нагревания происходит необратимое упрочнение (реакция образования сетчатой структуры), поэтому резолы прессуют в формах.
Упрочненные феноло-формальдегидные смолы чаще носят название бакелитов. Эта пластмасса хорошо обрабатывается механически инструментами для обработки металла и может подвергаться полированию. Бакелит из ново лака имеет большую термостойкость (100 – 150°С), чем бакелит из резола, но худшие диэлектрические свойства.
Бакелит трудногорюч, а после извлечения из пламени сразу гаснет. Горящий бакелит дает желтый цвет пламени, коптящий в зависимости от вида наполнителя. Остаток, извлеченный из пламени, твердый, разбухший, потрескавшийся и обугленный. В процессе горения выделяются фенол и формальдегид с характерным запахом.
Бакелит стоек к воздействию
разбавленных кислот и щелочей, а
также большинства органических
растворителей. Для склеивания треснутых
бакелитовых изделий можно
Из бакелита изготавливают изделия галантереи (пуговицы, пепельницы), электротехнические элементы (вилки, розетки), корпуса радио- и телефонных и аппаратов, детали стиральных машин, защитные шлемы, корпуса аккумуляторов, плиты, лаки, клеи.
Аминопласты являются термоупрочняемыми пластмассами. К ним относятся карбамидо-формальдегидные смолы и меламино-формальдегидные смолы.
Неупрочненная смола получается
при поликонденсации
Упрочненные аминопласты твердые и жесткие. Их можно полировать и механически обрабатывать инструментами по металлу, они имеют хорошие электроизоляционные свойства, легко окрашиваются.
Теплостойкость упрочненных аминопластов около 100 – 120оС. Образец, внесенный в огонь, начинает гореть не более чем через 1 минуту. Вынутый из пламени, он не гаснет, но горит медленно (в действительности горят наполнители, сама смола негорюча). Огонь имеет желтый цвет (меламиновая смола) или желтый с зеленовато-голубой каймой (карбамидная смола). Остаток после горения растрескавшийся, разбухший и покрыт по краям характерным белым налетом. Во время горения отчетливо чувствуется запах формальдегида и карбамида.
Упрочненные аминопласты
стойки к воздействию воды, кислот
(в том числе серной и азотной),
щелочей и органических растворителей.
Для склеивания таких аминопластов
можно применять феноло-
Из аминопластов изготавливают клеи для дерева, электротехнические детали (розетки, выключатели) и галантерею, тонкие покрытия для украшения, лаки (так называемые печные), пенистые материалы.
Реактопласты с волокнистыми наполнителями представляют собой композиции, состоящие из связующего (смолы) и волокнистого наполнителя в виде очесов хлопка (волокниты), асбеста (асбоволокниты), стекловолокна (стекловолокниты).
Волокниты применяют для изготовления деталей с повышенной устойчивостью к ударным нагрузкам, работающих на изгиб и кручение (втулок, шкивов, маховиков и др.).
Асбоволокниты обладают хорошими фрикционными (тормозными) свойствами и теплостойкостью, но по водостойкости и диэлектрической приницаемости уступают пластмассам с порошковым наполнителем.
Стекловолокниты негорючи, стойки к действию ультрафиолетовых лучей, химически стойки, имеют стабильные размеры. Некоторые марки стекловолокнитов применяются для изготовления силовых электротехнических деталей в машиностроении, а также крупногабаритных изделий простых форм (кузовов автомашин, лодок, корпусов приборов и т. п.). Стекловолокниты имеют высокие физико-механические характеристики и применяются для изготовления деталей высокого класса точности и сложной конфигурации. Стекловолокниты могут работать при температурах от –60 до +200°С, имеют прочность при разрыве 80 – 500 МПа.
В качестве связующих смол волокнитов и стекловолокнитов применяются полиэстеровые и эпоксидные смолы.
Полиэстры (полиэстеровые, или полиэфирные смолы) являются полимерами, полученными из полиосновных кислот и полигидроксильных спиртов путем поликонденсации.
Перед отверждением смола
имеет вид густого сиропа золотистого
цвета. Отверждение проводят в форме
при комнатной температуре
Термическая стойкость под напряжением отвержденных смол лежит в пределах 55 – 60°С, а без нагрузки превышает 150oС. Образец ламината (полиэстеровая смола со стеклотканью), помещенный в пламя, горит очень плохо. После извлечения из пламени чаще всего гаснет. После сгорания остается обугленный скелет стекловолокна.
Отвержденные полиэстры нерастворимы в органических кислотах, в ацетоне легко растрескиваются.
Из полиэстров, упрочненных стекловолокном, изготавливают спасательные лодки, части автомобилей, мебель, корпуса планеров и вертолетов, гофрированные плиты для крыш, плафоны ламп, мачты для антенн, лыжи и палки, удочки, защитные каски и т. п. В виде текучих смол полиэстры применяют для заливки частей электронной аппаратуры, мумификации анатомических препаратов, изготовления лаков и т. п.
Эпоксидные смолы. Неотвержденные эпоксидные смолы получают реакцией поликонденсации эпоксида (эпихлоргидрина) с дифенилолпропаном (дианом). Процесс отверждения является реакцией суммирования (полиприсоединения), в которой роль отвердителя играет полиамин.
Характерной чертой эпоксидных смол является совершенная прилипаемость почти ко всем пластмассам, к металлам; они имеют хорошие механические и электрические свойства.
Термостойкость под
Эпоксидные смолы служат для изготовления лаков, клеев, а также производства ламинатов.
Большую группу реактопластов
составляют слоистые пластмассы, которые
содержат листовые наполнители, уложенные
слоями. В качестве наполнителей для
слоистых пластиков используют материалы
органического (бумагу, картон, хлопчатобумажные
ткани, древесный шпон, ткани из синтетических
волокон) и неорганического (асбестовую
бумагу, стеклянную ткань, ткань из
кварцевых или кремнеземных волокон)
происхождения. В зависимости от
вида наполнителя различают
Свойства слоистых пластиков
зависят от соотношения компонентов
(наполнителя и связующего), характера
подготовки наполнителя, режимов прессования
и термообработки и других технологических
факторов. Благодаря слоистому
Механические свойства слоистых пластиков определяются прежде всего видом используемого наполнителя. Наибольшей механической прочностью обладают слоистые пластики на основе стеклянной ткани или стеклянных жгутов. Эти материалы, а также слоистые пластики на основе асбоволокнистых наполнителей имеют более высокую теплостойкость по сравнению с теплостойкостью пластиков на основе органических наполнителей.
Информация о работе Методы переработки реактопластов. Классификация. Области применения