Круговорот веществ в биосфере

Автор: Пользователь скрыл имя, 15 Декабря 2012 в 18:12, реферат

Краткое описание

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот.

Оглавление

1. Биогеохимические круговороты. 3
2. Круговорот веществ в биосфере. 5
3. Круговорот углерода. 6
4. Круговорот кислорода. 9
5. Круговорот азота. 10
6. Круговорот фосфора. 12
7. Круговорот серы. 13
8. Круговорот воды. 16
9. Антропогенные воздействия на окружающую среду. 17
Использованная литература. 19

Файлы: 1 файл

химия.doc

— 148.00 Кб (Скачать)

 

Содержание.

 

 

 

 

Лист.

1. Биогеохимические круговороты.

3

2. Круговорот веществ  в биосфере.

5

3. Круговорот углерода.

6

4. Круговорот кислорода.

9

5. Круговорот азота.

10

6. Круговорот фосфора.

12

7. Круговорот серы.

13

8. Круговорот воды.

16

9. Антропогенные воздействия на окружающую среду.

17

Использованная литература.

19


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Биогеохимические  круговороты.

В отличие от энергии, которая однажды использованная организмом, превращается в тепло  и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями.

Круговороты элементов  и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот.

Существует закон глобального  замыкания биогеохимического круговорота  в биосфере, действующий на всех этапах её развития, как и правило  увеличения замкнутости биогеохимического  круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота. Ещё большую роль на биогеохимический круговорот оказывает человек. Но его роль осуществляется в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день.

Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера состояла из вулканических  газов. В ней было много углекислого газа и мало кислорода (если вообще был), и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород и уменьшалось содержание углекислого газа. Сейчас содержание углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглотительной способности «зелёного пояса». Последнее является результатом уменьшения количества самих зелёных растений, а также связано с тем, что пыль и загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной  деятельности степень замкнутости  биогеохимических круговоротов уменьшается. Хотя она довольно высока (для различных  элементов и веществ она не одинакова), но тем не менее не абсолютна, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция (наивысшая степень замкнутости биогеохимических круговоротов наблюдается в тропических экосистемах – наиболее древних и консервативных).

Таким образом, следует  говорить не об изменении человеком  того, что не должно меняться, а скорее о влиянии человека на скорость и  направление изменений и на расширение их границ, нарушающее правило меры преобразования природы. Последнее формулируется следующим образом: в ходе эксплуатации природных систем нельзя превышать некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания. Нарушение меры как в сторону увеличения, так и в сторону уменьшения приводит к отрицательным результатам. Например, избыток вносимых удобрений столь же вреден, сколь и недостаток. Это чувство меры утеряно современным человеком, считающим, что в биосфере ему всё позволено.

Надежды на преодоление  экологических трудностей связывают, в частности, с разработкой и введением в эксплуатацию замкнутых технологических циклов. Создаваемые человеком циклы превращения материалов считается желательным устраивать так, чтобы они были подобны естественным циклам круговорота веществ. Тогда одновременно решались бы проблемы обеспечения человечества невосполнимыми ресурсами и проблема охраны природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных ресурсов утилизируется в конечном продукте.

Теоретически замкнутые  циклы превращения вещества возможны. Однако полная и окончательная перестройка индустрии по принципу круговорота вещества в природе не реальна. Хотя бы временное нарушение замкнутости технологического цикла практически неизбежно, например, при создании синтетического материала с новыми, неизвестными природе свойствами. Такое вещество вначале всесторонне апробируется на практике, и только потом могут быть разработаны способы его разложения с целью внедрения составных частей в природные круговороты.

2. Круговорот веществ в биосфере.

Процессы фотосинтеза  органического вещества из неорганических компонентов продолжается миллионы лет, и за такое время химические элементы должны были перейти из одной  формы в другую. Однако этого не происходит благодаря их круговороту  в биосфере. Ежегодно фотосинтезирующие организмы усваивают около 350 млрд т углекислого газа, выделяют в атмосферу около 250 млрд т кислорода и расщепляют 140 млрд т воды, образуя более 230 млрд т органического вещества (в пересчёте на сухой вес).

Громадные количества воды проходят через растения и водоросли в процессе обеспечения транспортной функции и испарения. Это приводит к тому, что вода поверхностного слоя океана фильтруется планктоном за 40 дней, а вся остальная вода океана – приблизительно за год. Весь углекислый газ атмосферы  обновляется за несколько сотен лет, а кислород за несколько тысяч лет. Ежегодно фотосинтезом в круговорот включается 6 млрд т  азота, 210 млрд т фосфора и большое количество других элементов (калий, натрий, кальций, магний, сера, железо и др.). существование этих круговоротов придаёт экосистеме определённую устойчивость.

Различают два основных круговорота: большой (геологический) и малый (биотический).

Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

Малый круговорот (часть  большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих этих растений, так и других организмов (как правило животных), которые поедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

Круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки. Так, тело человека состоит из кислорода (62,8%), углерода (19,37%), водорода (9,31%), азота (5,14%), кальция (1,38%), фосфора (0,64%) и ещё примерно из 30 элементов.

3. Круговорот  углерода.

 

Самый интенсивный биогеохимический цикл – круговорот углерода. В природе  углерод существует в двух основных формах – в карбонатах (известняках) и углекислом газе. Содержание последнего в 50 раз больше, чем в атмосфере. Углерод участвует в образовании углеводов, жиров, белков и нуклеиновых кислот.

Основная масса аккумулирована в карбонатах на дне океана (1016 т), в кристаллических породах (1016 т), каменном угле и нефти (1016 т) и участвует в большом цикле круговорота.

Основное звено большого круговорота углерода – взаимосвязь процессов фотосинтеза и аэробного дыхания (рис. 1).

Другое звено большого цикла круговорота углерода представляет собой анаэробное дыхание (без доступа  кислорода); различные виды анаэробных бактерий преобразуют органические соединения в метан и другие вещества (например, в болотных экосистемах, на свалках отходов).

В малом цикле круговорота  участвует углерод, содержащийся в  растительных тканях (около 1011 т) и тканях животных (около 109 т).

Более подробная схема  круговорота представлена на рис. 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 


 



 

                                                    Сжигание и                  Тепло                                 Тепло


                                                 выветривание

 



 


 



 


 


 

 

 

 

 

Рис. 1. Круговорот углерода в процессах фотосинтеза и  аэробного дыхания.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





                                                                 Растворяется

                                                                    в дождевой


                                                                      воде 


 

 


 




 


 



                                                   


 


 



 


 

 

 



 

 


 

 

 

 

 

 

 

Рис. 2. Круговорот углерода.

 

 

 

 

 

 

 

 

 

 

 

4. Круговорот  кислорода.

 

В количественном отношении  главной составляющей живой материи  является кислород, круговорот которого осложнён его способностью вступать в различные химические реакции, главным образом реакции окисления. В результате возникает множество локальных циклов, происходящих между атмосферой, гидросферой и литосферой.

Кислород, содержащийся в атмосфере и в поверхностных  минералах (осадочные кальциты, железные руды), имеет биогенное происхождение  и должно рассматриваться как  продукт фотосинтеза. Этот процесс противоположен процессу потребления кислорода при дыхании, который сопровождается разрушением органических молекул, взаимодействием кислорода с водородом (отщеплённым от субстрата) и образованием воды. В некотором отношении круговорот кислорода напоминает обратный круговорот углекислого газа. В основном он происходит между атмосферой и живыми организмами.

Потребление атмосферного кислорода и его возмещение растениями в процессе фотосинтеза осуществляется довольно быстро. Расчёты показывают, что для полного обновления всего атмосферного кислорода требуется около двух тысяч лет. С другой стороны, для того, чтобы все молекулы воды гидросферы были подвергнуты фотолизу и вновь синтезированы живыми организмами, необходимо два миллиона лет. Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа, и её масса составляет 5,9*1016 т. Масса кислорода, циркулирующего в биосфере в виде газа или сульфатов, растворённых в океанических и континентальных водах, в несколько раз меньше (0,4*1016 т).

Отметим, что, начиная  с определённой концентрации, кислород очень токсичен для клеток и тканей (даже у аэробных организмов). А живой  анаэробный организм не может выдержать (это было доказано ещё в прошлом веке Л. Пастером) концентрацию кислорода, превышающую атмосферную на 1%.

 

 

 

 

 

 

 

5. Круговорот  азота.

 

Газообразный азот возникает  в результате реакции окисления  аммиака, образующегося при извержении вулканов и разложении биологических отходов:

4NH3 + 3O2 ® 2N2 + 6H2O.

Круговорот азота –  один из самых сложных, но одновременно самых идеальных круговоротов. Несмотря на то что азот составляет около 80% атмосферного воздуха, в большинстве случаев  он не может быть непосредственно использован растениями, т.к. они не усваивают газообразный азот. Вмешательство живых существ в круговорот азота подчинено строгой иерархии: только определённые категории организмов могут оказывать влияние на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в атмосферу в результате работы некоторых бактерий, тогда как другие бактерии – фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его, преобразуя в нитраты. Неорганическим путём нитраты образуются и в атмосфере в результате электрических разрядов во время гроз.

Информация о работе Круговорот веществ в биосфере