Альтернативная энергия

Автор: Пользователь скрыл имя, 14 Марта 2012 в 19:30, реферат

Краткое описание

В настоящее время во всем мире наблюдается повышенный интерес к использованию в различных отраслях экономики нетрадиционных возобновляемых источников энергии (НВИЭ). Ведется бурная дискуссия о выборе путей развития энергетики. Это связано, прежде всего, с растущей необходимостью охраны окружающей среды.

Файлы: 1 файл

Альтернативная энергия.docx

— 51.62 Кб (Скачать)

Солнце.

Солнечные электростанции. После энергетического кризиса 1973 г. правительствами стран и частными компаниями были приняты экстренные меры по поиску новых видов энергетических ресурсов для получения электроэнергии. Таким источником в первую очередь стала солнечная энергия. Были разработаны параболо-цилиндрические концентраторы. Эти устройства концентрируют солнечную энергию на трубчатых приемниках, расположенных в фокусе концентраторов. Интересно, что в 1973 г. вскоре после начала нефтяного эмбарго был сконструирован плоский концентратор, явившийся успехом научной и инженерной мысли. Это привело к созданию первых солнечных электростанций (СЭС) башенного типа. Широкое применение эффективных материалов, электронных устройств и параболо-цилиндрических концентраторов позволило построить СЭС с уменьшенной стоимостью - системы модульного типа. Началось внедрение этих систем в Калифорнии фирмой Луз (Израиль). Были подписаны контракты с фирмой Эдисон на строительство в южной Калифорнии серии СЭС.

В качестве теплоносителя использовалась вода, а полученный пар подавался  к турбинам. Первая СЭС, построенная  в 1984 г., имела КПД 14,5%, а себестоимость  производимой электроэнергии 29 центов/(кВт-ч). В 1994 г. фирма Луз реорганизована в компанию Солел, базирующуюся в Израиле, и продолжает успешно работать над созданием СЭС, ведет строительство СЭС мощностью 200 МВт, а также разрабатывает новые системы аккумулирования энергии. В период между 1984 и 1990 г. фирмой Луз было построено девять СЭС общей мощностью 354 МВт. Последние СЭС, построенные фирмой Луз, производят электроэнергию по 13 центов/(кВт-ч) с перспективой снижения до 10 центов/(кБт-ч). Д. Миле из университета Сиднея улучшил конструкцию солнечного концентратора, использовав слежение за Солнцем по двум осям и применив вакуумированный теплоприемник, получил КПД 25--30%. Стоимость получаемой электроэнергии составит 6 центов/(кВт-ч).

Строительство первой экспериментальной  установки с таким концентратором начато в 1994 г. а Австралийском национальном университете, мощность установки 2 МВт. Считают, что подобная система будет  создана в США после 2000 г. и  она позволит снизить стоимость  получаемой электроэнергии до 5,4 цента/(кВт-ч). При таких показателях строительство СЭС станет экономичным и конкурентоспособным по сравнению с ТЭС.

Другим типом СЭС, получившим развитие, стали установки с двигателем Стирлинга, размещаемым в фокусе параболического зеркального концентратора. КПД таких установок "может достигать 29%. Предполагается использовать подобные СЭС небольшой мощности для электроснабжения автономных потребителей в отдаленных местностях.

ОТЭС. В перспективе можно использовать для получения электроэнергии разность температуры слоев воды в океане, которая может достигать 20°С. Станции на этой основе (ОТЭС) находятся в разработке. Первый вариант подобной установки мощностью 5 МВт проектируется в Израиле. Меньшие по мощности установки действуют в Австралии, Калифорнии и ряде других стран. Основная сложность перспективы их использования - низкая экономичность и как следствие отсутствие коммерческого интереса.

Фотоэнергетика. Начиная с 70-х годов правительства индустриальных стран израсходовали биллион долларов на разработки фотоэлектрических преобразователей. За последние 10 лет стоимость фотоэлектрических преобразователей снижалась и в 1993 г. достигла 3,5-4,75 дол/Вт, а стоимость получаемой энергии 25-40 центов/(кВт/ч). Мировой объем производства с 6,5 МВт в 1980 г. увеличился до 29 МВт в 1987 г. и в 1993 г. составил более 60 МВт.

В Японии ежегодно выпускается 100 млн. калькуляторов общей мощностью 4 МВт, что составляет 7% мировой торговли фотоэлектрическими преобразователями. Более 20 тыс. домов в Мексике, Индонезии, Южной Африке, Шри-Ланке и в  других развивающихся странах используют фотоэлектрические системы, смонтированные на крышах домов, для получения электроэнергии для бытовых целей.

Наилучшим примером использования  таких систем является Доминиканская  республика, где 2 тыс. домов имеют  фотоэлектрические установки, сконструированные  в последние 9 лет. Стоимость такой установки 2 тыс. дол.

В Шри-Ланке израсходовано 10 млн. дол  на электрификацию 60тыс. домов с  помощью фотосистем. Стоимость установки  мощностью 50Вт, включающая фотопанель, источник света и аккумуляторную батарею, составляет 500 дол.

В будущем стоимость ycтaновки для малых систем будет снижаться, например установки с люминесцентными лампами. В Кении в течение последних лет 20 тыс. домов электрифицировано с помощью фотосистем по сравнению с 17 тыс. домами, где за это же время введено централизованное электроснабжение. В Зимбабве за счет кредита в 7 млн. дол, выделенного в 1992 г., будет электрифицировано 20 тыс. домов в течение 5 лет. Мировым банком выделен кредит в 55 млн. дол. для электрификации 100 тыс. домов в Индии фотосистемами. В США стоимость 1 км распределительных электросетей составляет 13-33 тыс. дол. Контракт на установку мощностью 500 МВт, включающую электроснабжение дома, освещение, радио, телевидение и компьютер, составляет не менее 15 тыс. дол. (включая аккумуляторную батарею). Уже имеется 50 тыс. таких установок в городах и ежегодно строится около 8 тыс. установок. Среди индустриальных стран кроме США также лидируют в использовании фотосистем в домах Испания и Швейцария.

Если даже ежегодно в мире будет  снабжаться фотосистемами 4 млн. домов (1% тех, что электрифицируются ежегодно), то общая установленная мощность фотосистем составит всего 200 МВт, что  в 4 раза меньше мирового производства их в 1993 г. Если производство фотосистем достигнет ежегодно 1% общей продажи  энергии в мире, то их производство по сравнению с современным уровнем  должно возрасти десятикратно, а увеличение до 10% этой продажи приведет к стократному росту производства фотосистем.

Для успешного внедрения фотосистем их удельная стоимость должна быть снижена в 3-5 раз прежде, чем появятся крупные энергосистемы.

Половина продажи кремния приходится на монокристаллы, поликристаллическая  модификация также имеет большое  будущее. Большое будущее будут  иметь тонкопленочные системы, в  частности на основе аморфного кремния. Некоторые образцы фотоэлектро-преобразователей на основе аморфного кремния имеют КПД 10%, удельную стоимость 1 дол/Вт, стоимость получаемой электроэнергии 10-12 центов/(кВт/ч) - это ниже, чем была ее стоимость в 1993 г. Имеется перспектива снижения стоимости к 2000 г. до 10 центов/(кВт /ч) и до 4 центов/(кВт /ч) к 2020 г.

Итак, фотоэнергетика может стать  ведущим источником энергии мировой  большой индустрии. Это подтверждают сделанные в 1994 г. разработки, считают  эксперты. В результате создания новых  технологий и повышения технического уровня продукции может быть преодолен  барьер для внедрения фотоэлектрических  систем, связанный с высокой их стоимостью. Так, по инициативе корпорации Енрон ведется разработка фотоэлектрической  станции мощностью 100 МВт для строительства  в Неваде, на которой стоимость  вырабатываемой электроэнергии составит 5,5 цента/(кВт/ч).[1]

Солнечная энергия является наиболее мощным и доступным из всех видов  нетрадиционных и возобновляемых источников энергии в Крыму. Солнечное излучение  не только неисчерпаемый, но и абсолютно  чистый источник энергии, обладающий огромным энергетическим потенциалом.

В реальных условиях облачности, годовой  приход суммарной солнечной радиации на территории Крымского региона  находится на уровне 1200-1400 кВт ч/м2.

При этом, доля прямой солнечной радиации составляет: с ноября по февраль 20-40 %. с марта по октябрь - 40-65%, на Южном  берегу Крыма в летние месяцы - до 65-70%.

В Крыму наблюдается также наибольшее число часов солнечного сияния в  течение года (2300-2400 часов в год), что создает энергетически благоприятную  и экономически выгодную ситуацию для  широкого практического использования  солнечной энергии.

В то же время, источник имеет довольно низкую плотность (для Крыма до 5 ГДж на 1 мгоризонтальной поверхности) и подвержен значительным колебаниям в | течение суток и года в зависимости от погодных условий, что требует принятия дополнительных технических условий по аккумулированию энергии.

Основными технологическими решениями  по использованию энергии являются: превращение солнечной энергии  в электрическую и получение тепловой энергии для целей теплоснабжения зданий.

Прямое использование солнечной  энергии в условиях Крыма, для  выработки в настоящее время  электроэнергии, требует больших  капитальных вложений и дополнительных научно-технических проработок.[8]

В 1986 г. вблизи г. Щелкино построена  первая в мире солнечная электростанция (СЭС-5) мощностью 5 тыс. кВт. К 1994 г. она  выработала около 2 млн. кВт.час электроэнергии. Эксперимент с СЭС показал реальность преобразования солнечной энергии в электрическую, но стоимость отпускаемой электроэнергии оказалась слишком высокой, что в условиях рыночной экономики является малоперспективным.

В настоящее время ПЭО "Крымэнерго" обосновало применение в Крыму солнечно-топливных  электростанций, являющихся СЭС второго  поколения с более высокими технико-экономическими показателями. Такую электростанцию планируется построить в Евпатории. Сегодня солнечная энергетика получила широкое развитие в мире. Мировым  лидером по строительству СЭС  является амери-канско-израильская  фирма "Луз", сооружающая станции  мощностью 30-80 МВт, на которых используется принципиально новая технология с параболоциливдрическими концентратами  солнечного излучения. Себестоимость  вырабатываемой ими электроэнергии ниже, чем на атомных электростанциях.[9]

Перспективность применения фотоэлектрического метода преобразования солнечной энергии  обусловлено его максимальной экологической  чистотой преобразования, значительным сроком службы фотоэлементов и малыми затратами на их обслуживание. При  этом простота обслуживания, небольшая  масса, высокая надежность и стабильность фотоэлектропреобразователей делает их привлекательными для широкого использования  в Крыму.

Основными задачами по широкому внедрению  фотоэлектрических источников питания  являются:

    • разработка научно-технических решений по повышению КПД фотоэлементов;
    • -применение высокоэффективных фотоэлементов с использованием концентраторов солнечного излучения.

Техническая подготовленность отечественных  предприятий на Украине позволяет  освоить производство фотоэлектрических  источников питания на суммарную  установленную мощность до 100 МВт.

Мощность фотоэлектрических преобразователей солнечной энергии, внедряемых в  Крыму к 2010 г., может составить  до 3,0 МВт, что может обеспечить экономию топлива до 1,7 тыс т у.т. в автономных системах энергообеспечения.

Солнечная энергия в Крыму может  использоваться не только для производства электроэнергии, но и тепла. Это реально  при широком распространении  в республике солнечных батарей (коллекторов), легко сооружаемых  и высокорентабельных. Разработкой  и изготовлением солнечных коллекторов  новой конструкции занимаются ГНПП “Гелиотерн”, “Крымэнерго” (пос. Утес) и трест “Южстальмонтаж” (г. Симферополь). Горячее водоснабжение от солнца (коллекторов) сбережет дефицитное органическое топливо и не будет загрязнять воздушный бассейн. В настоящий же период 80% тепловой энергии производят более трех тысяч котельных, которые не только сжигают огромное количество органического топлива, по и существенно повышают концентрацию газопылевых загрязнений воздушной среды.

Для успешного внедрения экологически чистых систем солнечного теплоснабжения, повышения надежности их функционирования необходимо:

    • • разработать и внедрить в производство на предприятиях Крыма различные виды энергетически эффективных солнечных коллекторов с улучшенными теплотехническими характеристиками, отвечающими современному зарубежному уровню, в частности: с селективным покрытием, вакуумные, пластмассовые для бытовых нужд, воздушные для нужд сельского хозяйства;
    • • довести выпуск солнечных коллекторов к 2010 г. до 3-5 тыс. штук в год, что эквивалентно замещению годового использования топлива - 0,35 - 0,65 тыс. т у.т.;
    • • увеличить в 2-3 раза выпуск высокоэффективных теплообменников для солнечных установок;
    • • обеспечить достаточную постановку запорной и регулирующей арматуры, приборов для автоматизации технологических процессов.

Реализация этих предложений позволяет  создать в Крыму собственную  промышленную индустрию по выпуску  основного специализированного  оборудования для комплектации и  строительства установок по использованию  солнечной энергии.

Наиболее перспективными направлениями  солнечного теплоснабжения на ближайшую  перспективу (до 2010 г.) являются:

    • • солнечное горячее водоснабжение индивидуальных и коммунальных потребителей сезонных объектов (детские, туристические, спортивные лагеря, объекты сана-торно-курортной сферы, жилых и общественных зданий);
    • • пассивное солнечное отопление малоэтажных жилых домов и промышленных сооружений, главным образом, в сельской местности и Южном берегу Крыма;
    • • использование солнечной энергии в различных сельскохозяйственных производствах (растениеводство в закрытых грунтах, сушка зерна, табака и других сельхозпродуктов и материалов);
    • • применение низкопотенциальной теплоты, полученной на солнечных установках, для разнообразных технологических процессов в различных отраслях промышленности (для пропарки при производстве железобетонных изделий и др. целей).

Экономия топлива на отопительных котельных от внедрения этих установок  может составить к 2000 г. - 4,01 тыс. т  у.т., за период 2001-2005 г. - 6,5 тыс. т у. т. и за период с 2006 по 2010 г. - 11,66 тыс т у.т.

Дополнительная выработка электроэнергии от работы солнечных фотоэлектрических  преобразователей батарей может  составить к 2000 г. - 0,30 млн. кВт. ч., за период с 2001 по 2005 г. - 0,72 млн. кВт. ч., за период с 2006 по 2010 гг. - 1,8 млн. кВт. ч.

Информация о работе Альтернативная энергия