Роль фитосинтеза в биосфере

Автор: Пользователь скрыл имя, 11 Мая 2013 в 20:41, реферат

Краткое описание

Родоначальником всех известных нам видов энергии, включая и ядерную, является Солнце. Ежесекундно оно излучает в мировое пространство 2,86*1033 кВт. Земля получает только 2*10-7 этого потока энергии, но даже и такой крошечной доли своей энергии небесное светило обеспечивает всё многообразие форм жизни на нашей планете. За трое суток Земля получает от Солнца такое количество энергии, которое могло бы освободиться при сжигании всех имеющихся природных запасов угля, нефти и древесины. Отсюда становится ясным, что Солнце могло бы удовлетворить любые мыслимые потребности людей в энергии, если бы только знать, как это можно реализовать.

Оглавление

Введение 3
Фотосинтез — основной источник энергии в биосфере 3
История открытия фотосинтеза 5
Лимитирующие факторы 9
Световые и темновые реакции 11
Заключение 13
Список литературы: 15

Файлы: 1 файл

Реферат по экологии.doc

— 155.50 Кб (Скачать)

Световые и темновые реакции

Еще в 1905 г. английский физиолог растений Ф. Ф. Блекмэн, интерпретируя форму кривой светового насыщения фотосинтеза, высказал предположение, что фотосинтез представляет собой двухстадийный процесс, включающий фотохимическую, т.е. светочувствительную реакцию и нефотохимическую, т. е. темновую, реакцию. Темновая реакция, будучи ферментативной, протекает медленнее, чем световая реакция, и поэтому при высоких интенсивностях света скорость фотосинтеза полностью определяется скоростью темновой реакции. Световая реакция либо вообще не зависит от температуры, либо зависимость эта выражена очень слабо, тогда темновая реакция, как и все ферментативные процессы, зависит от температуры в довольно значительно и степени. Следует ясно представлять себе, что реакция, называемая темновой, может протекать как в темноте, так и на свету. Световую и темновую реакции можно разделить, используя вспышки света, длящиеся краткие доли секунды. Вспышки света длительностью меньше одной миллисекунды (10-3 с) можно получить либо с помощью механического приспособления, поставив на пути пучка постоянного света вращающийся диск со щелью, либо электрически, заряжая конденсатор и разряжая его через вакуумную или газоразрядную лампу. В качестве источников света пользуются также рубиновыми лазерами с длиной волны излучения 694 нм. В 1932 г. Эмерсон и Арнольд освещали суспензию клеток вспышками света от газоразрядной лампы с длительностью около 10-3 с. Они измеряли скорость выделения кислорода в зависимости от энергии вспышек, длительности темнового промежутка между вспышками и температуры суспензии клеток. При увеличении интенсивности вспышек насыщение фотосинтеза в нормальных клетках наступало, когда выделялась одна молекула на 2500 молекул хлорофилла. Эмерсон и Арнольд сделали вывод, что максимальный выход фотосинтеза определяется не числом молекул хлорофилла, поглощающих свет, а числом молекул фермента, катализирующего темновую реакцию. Они также обнаружили, что при увеличении темновых интервалов между последовательными вспышками за пределы 0,06 с выход кислорода в расчете на одну вспышку уже не зависел от длительности темнового интервала, тогда как при более коротких промежутках он возрастал с увеличением длительности темнового интервала (от 0 до 0,06 с). Таким образом, темновая реакция, которая определяет уровень насыщения фотосинтеза, завершается примерно за 0,06 с. На основе этих данных было рассчитано, что среднее время, характеризующее скорость реакции, составило около 0,02 с при 25 °С.

Заключение

Наряду с Фотосинтезом на Земле совершаются примерно равноценные по масштабам, но противоположные по направлению процессы окисления органических веществ и восстановленного углерода при горении топливных материалов (каменный уголь, нефть, газ, торф, дрова и т.п.), при расходовании органических веществ живыми организмами в процессе их жизнедеятельности (дыхание, брожение), в результате которых образуются полностью окисленные соединения – углекислый газ и вода, и освобождается энергия. Затем с помощью энергии солнечной радиации углекислый газ, вода снова вовлекаются в процессы Фотосинтеза. Т. о., энергия солнечного света, используемая при Фотосинтезе, служит движущей силой колоссального по размерам круговорота на Земле таких элементов, как углерод, водород, кислород. В этот круговорот включаются и многие др. элементы: N, S, Р, Mg, Ca и др. За время существования Земли благодаря Фотосинтезу важнейшие элементы и вещества прошли уже много тысяч циклов полного круговорота. В предшествующие эпохи условия для Фотосинтеза на Земле были более благоприятны в связи с сильным перевесом восстановительных процессов над окислительными. Постепенно огромные количества восстановленного углерода в органических остатках оказались захороненными в недрах Земли, образовав громадные залежи горючих ископаемых. В результате этого в атмосфере сильно снизилось относительное содержание углекислого газа (до 0,03 объёмных %) и повысилось содержание кислорода, что существенно ухудшило условия для Фотосинтез. Следствием появления на Земле мира фотосинтезирующих растений и непрерывного новообразования ими больших количеств богатых энергией органических веществ явилось развитие мира гетеротрофных организмов (бактерий, грибов, животных, человека) – потребителей этих веществ и энергии. В результате (в процессе дыхания, брожения, гниения, сжигания) органические соединения стали окисляться и подвергаться разложению в таких же количествах, в каких образуют их высшие растения, водоросли, бактерии. На Земле установился круговорот веществ, в котором сумма жизни на нашей планете определяется масштабами Фотосинтез. В текущем геологическом периоде (антропогеновом) размеры фотосинтетической продуктивности на Земле, вероятно, стабилизировались. Однако в связи с бурно возрастающим использованием продуктов Фотосинтез основным её потребителем – человеком – приходится думать о предстоящем истощении горючих ископаемых, пищевых, лесных ресурсов и т.п. Недостаточна фотосинтетическая мощность современной растительности для регенерации атмосферы: растительность Земли не способна полностью усваивать весь углекислый газ (относительное содержание его в атмосфере за последние 100 лет медленно, но неуклонно возрастает), дополнительно поступающий в окружающую среду в результате бурно возрастающих масштабов добычи и сжигания горючих ископаемых.

 При этом потенциальная фотосинтетическая активность растений используется далеко не полно. Проблема сохранения, умножения и наилучшего использования фотосинтетической продуктивности растений – одна из важнейших в современном естествознании и практической деятельности человека.

 

Список литературы:

  1. Виноградов А.П., «Изотопы кислорода и фотосинтез»
  2. Гуринович Г.П., Севченко А.Н., Соловьев К.Н. «Спектроскопия хлорофилла»
  3. Климов В.В., «Фотосинтез и биосфера», 1996
  4. Красновский А.А., «Преобразование энергии света при фотосинтезе»
  5. Мокроносов А.Г., Гавриленко В.Ф., «Фотосинтез: физиолого-экологические и биохимические аспекты» М.,1992
  6. Холл Д., Рао К.,  «Фотосинтез». М.,1983
  7. http://chemistry.narod.ru/

Информация о работе Роль фитосинтеза в биосфере