Автор: Пользователь скрыл имя, 05 Февраля 2013 в 11:39, реферат
Повышение нефтеотдачи на разрабатываемых месторождениях равносильно открытию новых месторождений, поэтому данная проблема актуальна для всех нефтедобывающих стран мира.
Несомненно, что из всех новых методов повышения нефтеотдачи пластов наиболее подготовленными в технологическом и техническом отношении являются термические, позволяющие добывать нефть вязкостью до 100 МПа с увеличением при этом конечной нефтеотдачи до 30 - 50%. В частности, метод паратеплового воздействия наиболее распространен как на промыслах стран СНГ, так и за рубежом.
ВВЕДЕНИЕ
В наше время существенно увеличились масштабы добычи нефти и газа и вводятся в разработку месторождения со сложными геолого-физическими условиями, решается важнейшая проблема увеличения полноты извлечения нефти из недр.
Исследования показывают, что средняя величина коэффициента нефтеотдачи составляет в СНГ 0,37-0,4, а в США – 0,33 (по данным Торри). Нефтеотдача пластов, сложенных малопроницаемыми коллекторами, характеризующимися режимом растворенного газа, еще ниже. М.Макет считает, что объем нефти, которая может быть извлечена из пластов, достигших экономического предела эксплуатации с помощью существующих методов воздействия, составит 1/3 объема нефти оставшейся в пласте. Следовательно, запасы остаточной нефти в так называемых истощенных пластах огромны. Они представляют собой солидный резерв нефтедобывающей промышленности. Повышение коэффициента нефтеотдачи пласта со средними запасами до 0,7-0,8 равносильно открытию новых крупных месторождений. Увеличение отношения объема добываемой нефти к ее остаточным труднодоступным (или недоступным) для извлечения запасам является очень важной и сложной проблемой. Однако работы отечественных и зарубежных исследователей показали, что она может быть решена в ближайшем будущем.
Нефтеотдача – отношение количества извлеченной из пласта нефти к первоначальным ее запасам в пласте. Различают текущую и конечную нефтеотдачу. Под текущей нефтеотдачей понимают отношение количества извлеченной из пласта нефти на данный момент разработки пласта к первоначальным ее запасам. Конечная нефтеотдача – отношение количества добытой нефти к первоначальным ее запасам в конце разработки пласта. Вместо термина «нефтеотдача» употребляют также термин «коэффициент нефтеотдачи».
Величина притока и темпы извлечения нефти, производительность скважины в значительной степени зависят от состояния призабойной зоны скважины. Особое значение имеет эффективная проницаемость призабойной зоны пласта. Ввиду радиального притока жидкости в скважину, на единицу площади призабойной зоны приходится наибольшее количество поверхностно-активных компонентов. Снижение проницаемости призабойной зоны может быть обусловлена выпадением содержащихся в нефти парафина и асфальтено-смолистых веществ, а также отложением их на поверхности породы и стенках скважины. Поверхности частиц песка или других пород скелета пласта могут служить такими же центрами кристаллизации, как и шероховатые поверхности стенок насосно-компрессорных труб.
В результате адсорбции
поверхностно-активных веществ нефти
может изменяться молекулярная природа
поверхности и произойти
Паротепловое воздействие на призабойную зону преследует цель прогрева ограниченной площади пласта, направленного на увеличение продуктивности скважин. При этом улучшаются фильтрационные характеристики, снижается вязкость нефти, изменяйся смачиваемость горных пород, увеличивается подвижность нефти, активизируется режим растворенного газа.
Тепловое воздействие на призабойную зону может быть осуществлено путем электропрогрева или закачкой пара. Нагнетание пара в пласт производят в режиме циклической закачки его в добывающие скважины, выдержкой их в течение некоторого времени и последующего отбора продукции из этих же скважин. При данной технологии достигается прогрев нефтесодержащего пласта в призабойной зоне скважин, наряду со снижением вязкости повышается пластовое давление, происходит очистка призабойной зоны от смолистых веществ и восстановление ее проницаемости, в результате чего увеличивается приток нефти к скважинам, значительно облегчается подъем продукции по стволу скважины, увеличивается охват пласта вытеснением.
На этапе нагнетания пара в пласт он преимущественно внедряется в наиболее проницаемые слои и крупные поры пласта. Во время выдержки в прогретой зоне пласта за счет противоточной капиллярной пропитки происходит активное перераспределение жидкостей: горячая вода и пар проникают в менее проницаемые пропластки, вытесняя оттуда прогретую нефть в более проницаемые слои.
Технология пароциклического воздействия на пласт заключается в последовательной реализации трех операций (этапов).
Этап 1. В добывающую скважину в течение двух-трех недель закачивается пар в объеме 30-100 т на один метр эффективной нефтенасыщенной толщины пласта. При этом происходит нагревание скелета пласта, содержащейся в нем нефти, температурное расширение всех компонентов, повышение давления в призабойной зоне. Объем закачиваемого пара должен быть тем больше, чем больше вязкость нефти в пластовых условиях и чем меньше давление в пласте.
Этап 2. После закачки пара скважину закрывают на «паропропитку» и выдерживают для конденсации пара и перераспределения насыщенности в пласте. В этот период происходит выравнивание температуры между паром, породами пласта и насыщающих его флюидов. При снижении давления в зону конденсации устремляется оттесненная от призабойной зоны пласта нефть, ставшая более подвижной в результате уменьшения вязкости при прогреве. В период конденсации пара происходит и капиллярная пропитка – в низкопроницаемых зонах нефть заменяется водой.
Этап 3. После выдержки скважину пускают на режим отбора продукции, при котором эксплуатацию ведут до предельного рентабельного дебита. По мере остывания прогретой зоны пласта в процессе эксплуатации дебит скважины постепенно уменьшается. Этот процесс сопровождается уменьшением объема горячего конденсата, что приводит к снижению давления в зоне, ранее занятой паром. Возникающая при этом депрессия является дополнительным фактором, способствующим притоку нефти в эту зону.
Эти операции (этапы) составляют один цикл. Фазы каждого цикла, а также объемы закачки пара (на 1 м эффективной толщины пласта) – величины непостоянные и могут меняться от цикла к циклу для получения максимального эффекта.
При осуществлении паротепловой обработки скважин горные породы действуют как теплообменник и способствуют тому, чтобы тепло, аккумулированное в процессе закачки пара, эффективно использовалось при фильтрации нефти из пласта в скважину. Одновременно при проведении паропрогрева происходит очистка призабойной зоны от парафина и асфальтено-смолистых отложений.
Реакция пласта на циклическую закачку пара в значительной степени зависит от коллектора. В толстых крутопадающих пластах, где преобладающим механизмом вытеснения нефти является гравитационное дренирование, может быть осуществлено 10 циклов и более. В пологих пластах, где добыча осуществляется на режиме растворенного газа, пластовая энергия быстро истощается, ограничивая число циклов обработки паром до 3-5.
На практике период нагнетания пара обычно равен одной неделе, редко – более трех недель, а период выдержки длится 1-4 сут, иногда больше, в зависимости от характеристик пласта. Последующая добыча с повышенным дебитом может длиться от 4 до 6 месяцев, после чего цикл работ повторяется.
Существенным экономическим
показателем эффективности
Прогрев ПЗС производят также с помощью спуска на забой скважины нагревательного устройства - электропечи или специальной погружной газовой горелки.
Однако электропрогревом, вследствие малой теплопроводности горных пород, не удается прогреть более или менее значительную зону, и радиус изотермы с избыточной температурой 40 °С, как показывают расчеты и исследования, едва достигает 1 м.
При закачке теплоносителя радиус зоны прогрева легко доводится до 10 - 20 м, но для этого требуются стационарные котельные установки - парогенераторы. При периодическом электропрогреве ПЗС в скважину на специальном кабеле-тросе спускают на нужную глубину электронагреватель мощностью несколько десятков кВт. Повышение мощности приводит к повышению температуры в зоне расположения нагревателя до 180 - 200 °С, вызывающее образование из нефти кокса.
Для периодического прогрева ПЗС создана самоходная установка электропрогрева скважин СУЭПС-1200 на базе автомашины повышенной проходимости ЗИЛ-157Е. На машине смонтированы каротажная лебедка с барабаном и приводом от двигателя автомобиля. На барабан наматывается кабель-канат КТНГ-10 длиной 1200 м с наружным диаметром 18 мм. Кабель-канат имеет три основные токопроводящие жилы сечением по 4 мм2 и три сигнальные жилы сечением по 0,56 мм2. Скрутка жил обматывается прорезиненной лакотканью и грузонесущей оплеткой, рассчитанной на разрывное усилие кабеля в 100 кН.
Вес 1 м кабеля 8 Н. На одноосном прицепе смонтированы автотрансформатор и станция управления от установки для центробежных электронасосов, применяемых при откачке нефти из скважин.
В комплект установки
СУЭПС-1200 входят три таких прицепа
для обслуживания трех скважин, а
также вспомогательное
Сверху нагревательные
трубки закрыты металлическим кожухом
для защиты от механических повреждений.
Нагреватель имеет наружный диаметр
112 мм и длину 2,1 м при мощности
10,5 кВт и длину 3,7 м при мощности
21 кВт. В верхней части
Pис. 1- Скважинный электронагреватель:
1 - крепление кабеля; 2 - проволочный бандаж; 3 - кабель-трос; 4 - головка нагревателя; 5 - асбестовая оплетка; 6 - свинцовая заливка; 7 - нажимная гайка; 8 - клеммная полость; 9 - нагревательпые трубки.
Практика использования электропрогрева ПЗС показала, что температура на забое стабилизируется через 4 - 5 сут непрерывного прогрева. В некоторых случаях стабилизация наступает через 2,5 сут (рис. 2).
Рис. 2- Изменение температуры на забоях скважины во времени при электропрогреве: 1 - 21 кВт; 2 - 10,5 кВт; 3, 4 - 21 кВт; 5, 6, 7 - 10,5 кВт.
Кривые 1, 2 - для скважин Арланского месторождения, остальные - для Ишимбайского
Измерения температуры
по стволу скважины показали, что нагретая
зона распространяется примерно на 20 -
50 м вверх и на 10 - 20 м вниз от
места установки
Эффект прогрева держится примерно 3 - 4 мес. Повторные прогревы, как правило, показывают снижение эффективности.
По результатам 814 электропрогревов в Узбекнефти эффективных было 66,4 %, при этом получено 70,3 т дополнительно добытой нефти на одну успешную обработку. По результатам 558 электропрогревов в Башкирии эффективных было 64,7 %, при этом на каждую эффективную обработку получено 336 т дополнительной нефти.
В Сахалиннефти по данным 670 операций средняя эффективность составила 63 т дополнительной нефти на 1 обработку.
При тепловых методах повышения нефтеотдачи пластов (ПНП) коллектор подогревается, чтобы снизить вязкость нефти и/или испарить ее. В обоих случаях нефть становится более подвижной и ее можно более эффективно направлять к добывающим скважинам. Помимо добавочного тепла в этих процессах создается движущая сила (давление). Существует два перспективных метода термического ПНП: нагнетание перегретого водяного пара и метод внутрипластового движущегося очага горения.
Вытеснение нефти перегретым паром
Водяной пар благодаря
скрытой теплоте