Автор: Пользователь скрыл имя, 09 Декабря 2011 в 16:54, реферат
Нефть представляет собой сложную смесь жидких органических веществ, в которых растворены различные твердые углеводороды и смолистые вещества. Кроме того, часто в ней растворены и сопутствующие нефти газообразные углеводороды. Разделение сложных смесей на более простые или в пределе – на индивидуальные компоненты называется фракционированием.
Введение……………………………………………………………..3
Фракционный состав нефти……………………………………….4
Основные нефтяные фракции……………………………………...6
Метод однократного и постепенного испарения…………………8
Заключение………………………………………………………….13
Список используемой литературы………………………………...14
Содержание
Введение…………………………………………………………
Фракционный состав нефти……………………………………….4
Основные нефтяные фракции……………………………………...6
Метод однократного и постепенного испарения…………………8
Заключение……………………………………………………
Список используемой
литературы………………………………...14
Введение.
Нефть представляет собой сложную смесь жидких органических веществ, в которых растворены различные твердые углеводороды и смолистые вещества. Кроме того, часто в ней растворены и сопутствующие нефти газообразные углеводороды. Разделение сложных смесей на более простые или в пределе – на индивидуальные компоненты называется фракционированием. Методы разделения базируются на различии физических, поверхностных и химических свойств разделяемых компонентов. При исследовании и переработке нефти и газа используются следующие методы разделения: физическая стабилизация (дегазация), перегонка и ректификация, перегонка под вакуумом, азеотропная перегонка, молекулярная перегонка, адсорбция, хроматография, применение молекулярных сит, экстракция, кристаллизация из растворов, обработка как химическими реагентами, так и карбамидом ( с целью выделения парафинов нормального строения). Всеми этими методами возможно получить различные фракции, по составу и свойствам резко отличающиеся от исходного продукта. Часто эти методы комбинируют. Так, например, абсорбция и экстракция при разделении смолистых веществ или экстракция и перегонка в процессе экстрактивной перегонки. При детальном исследовании химического состава нефти практически используются все перечисленные выше методы.
Наиболее распространенные методы и положены в основу заводской переработки нефти. В процессе перегонки при постепенно повышающейся температуре компоненты нефти отгоняются в порядке возрастания их температур кипения.
Для всех индивидуальных веществ температура кипения при данном давлении является физической константой. Так как нефть представляет собой смесь большого числа органических веществ, обладающих различным давлением насыщенных паров, то говорить о температуре кипения нефти нельзя.
В условиях лабороторной
перегонки нефти или
Фракционный состав нефтей.
Поскольку
нефть представляет собой многокомпонентную
непрерывную смесь
При исследовании качества новых нефтей (т. е. составлении технического паспорта), их фракционный состав определяют на стандартных перегонных аппаратах, снабженных ректификационными колоннами (например, на АРН–2 по ГОСТ 11011–85). Это позволяет значительно улучшить четкость погоноразделения и построить по результатам перегонки так называемую кривую истинной температуры кипения в координатах температура — выход фракций в % мас., (или % об.).
Нефти различных месторождений значительно различаются по фракционному составу и, следовательно, по потенциальному содержанию дистиллятов моторного топлива и смазочных масел. Большинство нефтей содержит 10–30 % бензиновых фракций, выкипающих до 200 % и 40–65% керосиногазойлевых фракций, перегоняющихся до 350 °С. Известны месторождения легких нефтей с высоким содержанием светлых (до 350 °С). Так, Самотлорская нефть содержит 58 % светлых, а газоконденсаты большинства месторождений почти полностью (85–90 %) состоят из светлых. Добываются также очень тяжелые нефти, состоящие в основном из высококипящих фракций (например, нефть Ярегского месторождения, добываемая шахтным способом).
Углеводный состав нефтей — является наиболее важным показателем их качества, определяющим выбор метода переработки, ассортимент и эксплуатационные свойства получаемых нефтепродуктов. В исходных нефтях содержатся в различных соотношениях все классы углеводов, кроме алкенов: алканы, цикланы, арены, а также гетероатомные соединения. Алканы (СnН2n+2) — парафиновые углеводы — составляют значительную часть групповых компонентов нефтей, газоконденсатов и природных газов. Общее содержание их в нефтях составляет 25–75 % маc. и только в некоторых парафинистых нефтях типа Мангышлакской достигает 40–50 %. С повышением молярной фракций нефти содержание в них алканов уменьшается. Попутные нефтяные и природные газы практически полностью, а прямогонные бензины чаще всего на 60–70 % состоят из алканов. В масляных фракциях их содержание снижается до 5–20 % маc. Из алканов в бензинах преобладают 2- и 3-монометилзамещенные, при этом доля изоалканов с четвертичным углеродным атомом меньше, а этил- и пропилзамещенные изоалканы практически отсутствуют. С увеличением числа атомов углерода в молекуле алканов свыше 8 относительное содержание монозамещенных снижается. В газойлевых фракциях (200–350 °С) нефтей содержатся алканы от додекана до эйкозана. Установлено, что среди алканов в них преобладают монометилзамещенные и изопреноидные (с чередованием боковых метильных групп через три углеродных атома в основе углеродной цепи) структуры. В среднем содержание алканов изопреноидного строения составляет около 10–11 %.
Циклоалканы (ц. СnН2n) — нафтеновые углеводы — входят в состав всех фракций нефтей, кроме газов. В среднем в нефтях различных типов они содержатся от 25 до 80 % мас. Бензиновые и керосиновые фракции представлены в основном гомологами циклопентана и циклогексана, преимущественно с короткими (C1 — С3) алкилзамещенными цикланами. Высококипящие фракции содержат преимущественно полициклические гомологи цикланов с 2–4 одинаковыми или разными цикланами сочлененного или конденсированного типа строения. Распределение цикланов по фракциям нефти самое разнообразное. Их содержание растет по мере утяжеления фракций и только в наиболее высококипящих масляных фракциях падает. Можно отметить следующее распределение изомеров цикланов: среди С7 — циклопентанов преобладают 1,2 — и 1,3-диметилзамещенные; С8 — циклопентаны представлены преимущественно триметилзамещенными; среди алкилциклогексанов преобладает доля ди- и триметилзамещенные, не содержащие четвертичного атома углерода.
Цикланы являются
наиболее высококачественной составной
частью моторного топлива и смазочных
масел. Моноциклические цикланы
придают моторному топливу
Арены (ароматические углеводороды) с эмпирической формулой СnНn+2–2Ка (где Ка — число ареновых колец) — содержатся в нефтях обычно в меньшем количестве (15–50 %), чем алканы и цикланы, и представлены гомологами бензола в бензиновых фракциях. Распределение их по фракциям различно и зависит от степени ароматизированности нефти, выражающейся в ее плотность. В легких нефтях содержание аренов с повышением температуры кипения фракции, как правило, снижается. Нефти средней плотности цикланового типа характеризуются почти равномерным распределением аренов по фракциям. В тяжелых нефтях содержание их резко возрастает с повышением температуры кипения фракций. Установлена следующая закономерность распределения изомеров аренов в бензиновых фракциях: из C8-аренов больше 1,3-диметилзамещенных, чем этилбензолов; С9-аренов преобладают 1,2,4-триметилзамещенные. Арены являются ценными компонентами в автобензине (с высокими октановым числом), но нежелательными в реактивном топливе и дизельном топливе. Моноциклические арены с длинными боковыми алкильными цепями придают смазочным маслам хорошие вязкостно-температурные свойства.
Основные нефтяные фракции.
Из
нефти выделяют разнообразные продукты,
имеющие большое практическое значение.
Сначала из нее удаляют растворенные газообразные
углеводороды (преимущественно метан).
После отгонки летучих углеводородов
нефть нагревают. Первыми переходят в
парообразное состояние и отгоняются
углеводороды с небольшим числом атомов
углерода в молекуле, имеющие относительно
низкую температуру кипения. С повышением
температуры смеси перегоняются углеводороды
с более высокой температурой кипения.
Таким образом можно собрать отдельные
смеси (фракции) нефти. Чаще всего при такой
перегонке получают четыре летучие фракции,
которые затем подвергаются дальнейшему
разделению.
Основные фракции нефти следующие:
• Газолиновая фракция, собираемая
от 40 до 200 °С, содержит углеводороды от
С5Н12 до С11Н24. При
дальнейшей перегонке выделенной фракции
получают газолин (tкип = 40–70 °С),
бензин
(tкип = 70–120 °С) – авиационный, автомобильный
и т.д.
• Лигроиновая фракция, собираемая
в пределах от 150 до 250 °С, содержит углеводороды
от С8Н18 до С14Н30.
Лигроин применяется как горючее для тракторов.
Большие количества лигроина перерабатывают
в бензин.
• Керосиновая фракция включает углеводороды
от С12Н26 до С18Н38
с температурой кипения от 180 до 300 °С. Керосин
после очистки используется в качестве
горючего для тракторов, реактивных самолетов
и ракет.
• Газойлевая фракция (tкип >
275 °С), по-другому называется дизельным
топливом.
• Остаток после перегонки нефти – мазут
– содержит углеводороды с большим числом
атомов углерода (до многих десятков) в
молекуле. Мазут также разделяют на фракции
перегонкой под уменьшенным давлением,
чтобы избежать разложения. В результате
получают соляровые масла (дизельное топливо),
смазочные масла (автотракторные, авиационные,
индустриальные и др.), вазелин (технический
вазелин применяется для смазки металлических
изделий с целью предохранения их от коррозии,
очищенный вазелин используется как основа
для косметических средств и в медицине).
Из некоторых сортов нефти получают парафин
(для производства спичек, свечей и др.).
После отгонки летучих компонентов из
мазута остается гудрон. Его широко применяют
в дорожном строительстве. Кроме переработки
на смазочные масла мазут также используют
в качестве жидкого топлива в котельных
установках.
Метод однократного и постепенного испарения.
Разделение нефти на составные части (фракции) по их температурам кипения в целях получения товарных нефтепродуктов или их компонентов. Перегонка нефти— начальный процесс переработки нефти на нефтеперерабатывающих заводах, основанный на том, что при нагреве нефти образуется паровая фаза, отличающаяся по составу от жидкости. Фракции, получаемые в результате перегонки нефти, обычно представляют собой смеси углеводородов. С помощью методов многократной перегонки нефтяных фракций удаётся выделить некоторые индивидуальные углеводороды. Перегонка нефти осуществляется методами однократного испарения (равновесная дистилляция) или постепенного испарения (простая перегонка, или фракционная дистилляция); с ректификацией и без неё; в присутствии перегретого водяного пара —испаряющего агента; при атмосферном давлении и под вакуумом. При равновесной дистилляции разделение нефти на фракции происходит менее четко по сравнению с простой перегонкой. Однако в первом случае при одной и той же температуре нагрева в парообразное состояние переходит большая часть нефти. В лабораторной практике в основном применяется простая перегонка нефти с ректификацией паровой фазы на установках периодического действия. В промышленности используется перегонка нефти с однократным испарением в сочетании с ректификацией паровой и жидкой фаз. Такое сочетание позволяет проводить перегонку нефти на установках непрерывного действия и добиваться высокой чёткости разделения нефти на фракции, экономного расходования топлива на её нагрев. Применение водяного пара приводит к снижению температурного режима, увеличению отбора нефтяных фракций и повышению концентрации высококипящих компонентов в остатке. На промышленных установках перегонка нефти вначале проводится при атмосферном давлении, а затем под вакуумом. При атмосферной перегонке нефть нагревается не выше 370 °С, так как при более высокой температуре начинается расщепление углеводородов — крекинг, а это нежелательно из-за того, что образующиеся непредельные углеводороды резко снижают качество и выход целевых продуктов.
В результате атмосферной перегонка нефти отгоняются фракции, выкипающие примерно от 30 до 350—360 °С, и в остатке остаётся мазут. Из нефтяных фракций, выкипающих до 360 °С, получаются различные виды топлив (бензины, топлива для реактивных и дизельных двигателей), сырьё для нефтехимического синтеза (бензол, этилбензол, ксилолы, этилен, пропилен, бутадиен), растворители и др. Дальнейшая перегонка мазута проводится под вакуумом (остаточное давление 5,3—8 кн/м2, или 40—60 мм рт. ст.), чтобы свести к минимуму крекинг углеводородов. В СССР на ряде нефтеперерабатывающих заводов производительность установок атмосферно-вакуумной переработки нефти доводилась до 8 млн. т нефти в год.
При перегонке с однократным испарением нефть нагревают в змеевике какого-либо подогревателя до заранее заданной температуры. По мере повышения температуры образуется все больше паров, которые находятся в равновесии с жидкой фазой, и при заданной температуре парожидкостная смесь покидает подогреватель и поступает в адиабатический испаритель. Последний представляет собой пустотелый цилиндр, в котором паровая фаза отделяется от жидкой. Температура паровой и жидкой фаз в этом случае одна и та же. Четкость разделения нефти на фракции при перегонке с однократным испарением наихудшая.
Перегонка
с многократным испарением состоит
из двух или более однократных
процессов перегонки с
Если при каждом однократном испарении нефти происходит бесконечно малое изменение ее фазового состояния, а число однократных испарений бесконечно большое, то такая перегонка является перегонкой с постепенным испарением.
Четкость разделения нефти на фракции при перегонке с однократным испарением наихудшая по сравнению с перегонкой с многократным и постепенным испарением. О плохой четкости разделения при однократном испарении нефти можно судить по рис.1, где на котором изображены кривые разгонки фракций 40 — 285°С. На рисунке обозначены линиями 1 — исходная фракция (обобщенная); 2, 3 и 4 — легкие фракции паровой фазы; 5 и 6 — тяжелые фракции жидкой фазы. Из рисунка следует, что температурные пределы вскипания полученных продуктов мало отличаются друг от друга.
Если
для нефтяной фракции построить
кривые разгонки с однократным и
многократным испарением (рис. 2), то окажется,
что температура начала кипения
фракций при однократном