Инженерная геология

Автор: Пользователь скрыл имя, 18 Декабря 2012 в 07:09, контрольная работа

Краткое описание

текстовая работа по геологии.

Оглавление

1. Что такое минерал? Что такое горная порода?...........................3
2. Осадочные породы - хемогенные……….………………………………6
3. Пластическая деформация слоев….………………………………….12
4. Список литературы……………………………………………………..19

Файлы: 1 файл

Земная кора состоит из горных пород.docx

— 1.02 Мб (Скачать)

Цвет известняков  преимущественно белый, светло-серый, желтоватый; присутствие органических, железистых, марганцовистых и других примесей обусловливает тёмно-серую, чёрную, бурую, красноватую и зеленоватую окраску.

Известняк имеет  универсальное применение в промышленности, сельском хозяйстве и строительстве. В металлургии известняк служит флюсом. В производстве извести и цемента известняк-главный компонент. Известняк используется в химической и пищевой промышленности: как вспомогательный материал в производстве соды, карбида кальция, минеральных удобрений, стекла, сахара, бумаги. Применяется при очистке нефтепродуктов, сухой перегонке угля, в изготовлении красок, замазок, резины, пластмасс, мыла, лекарств, минеральной ваты, для очистки тканей и обработки кожи, известкования почв.

 

Известняк - важнейший строительный материал, из него изготовляются облицовочные плиты, стеновые блоки, скульптурные и архитектурно-строительные изделия, щебень для производства бетона и асфальтобетона, железнодорожного балласта, оснований и покрытий автодорог, фильтров гидросооружений, как бутовый камень для фундаментов, мощения откосов, бортов и пр. Слаботрещиноватый мягкий известняк часто распиливается на блоки непосредственно из массива с помощью различных камнерезных машин. Такие известняки (пильные известняки) особенно ценны как строительный материал.

В зависимости  от способа и места осаждения, а также происхождения вод  и растворов хемогенные горные породы могут быть осадочными, гидротермально-осадочными и гидротермальными. Способы осаждения: постепенное концентрирование вод  и растворов в результате солнечного испарения, смешивание растворов двух или более растворимых солей и понижение температуры растворов. По происхождению минералообразующие воды и растворы могут быть морскими, континентальными гидротермальными (слабо- минерализованными и рассольными).

Место осаждения - поверхность (морские и континентальные водоёмы) или недра Земли. В первом случае образуются протяжённые пластовые тела, во втором  - трещинно-жильные линзовидные тела.

Преобладающая часть  хемогенных горных пород является гибридной - гидротермально-осадочной, в меньшей степени - осадочной и гидротермальной.

Состав минералообразующих вод и растворов, а также тектонические  и климатические условия определяют минералогический состав хемогенных горных пород и ценность их использования  в качестве полезного ископаемого.

К хемогенным горным породам относятся все минеральные соли, калийные соли, эвапориты, сода, кремни и кремневидные опоки в ассоциации с трепелами (продукты коагуляции кремневого гелия), фосфориты, железомарганцевые руды, бокситы, хемогенные известняки, травертины, большая часть свинцово-цинковых, серных, бороносных и литиеносных руд, которые являются ценным сырьём для развития различных отраслей промышленности.

Строение хемогенных горных пород характеризуется развитием  кристаллических зёрен разных размеров. Структура хемогенных пород определяется агрегатным состоянием минералов их слагающих - кристаллическим или аморфным и размерами кристаллических зерен, структура органогенных пород - состоянием слагающих их органических остатков и принадлежностью организмов к тем или иным группам. Классификация хемогенных пород обычно производится по химическому составу слагающих их минералов. При величинах менее 0,001 мм зёрна не видны даже в шлифе; такая структура называется аморфной или коллоидальной; макроскопически порода однородна, плотна и обладает характерным раковистым изломом. При размерах в 0,001-0,01 мм зёрна становятся различными в шлифах (микрозернистая структура), но внешний облик породы и раковистый излом сохраняются. При зёрнах в 0,01-0,1 мм структура называется тонко- или мелкозернистой, макроскопически зёрна ещё незаметны. При зёрнах 0,1-0,5 мм структура - среднезернистая; 0,5-1,0 мм -крупнозернистая: более 1 мм - грубозернистая. Если зёрна разной величины, структуру называют разнозернистой. Среди текстур хемогенных пород наиболее распространены оолитовая, массивная и слоистая. Оолитовая текстура характеризуется наличием округлых зёрен или их агрегатов (оолитов); она типична для карбонатных пород (известняков, доломитов), железных, марганцевых, фосфатных руд и бокситов. Массивная текстура наблюдается у однородных по сложению хемогенных пород (доломитов, известняков, гипсов, ангидритов). Слоистая текстура образована чередованием слоев пород различного минералогического состава или хемогенных и пластогенных пород (ангидритов, гипсов, каменной и калийных солей).

Седиментация  это осаждение вещества, его переход  из подвижного состояния в статичное. В этот момент оно, становясь неподвижным, теряет свою кинетическую энергию и в буквальном смысле слова опускается в «энтропийную яму». Практически почти все древние сохранившиеся породы, кроме кор выветривания, образовались ниже уровня воды. В зависимости от того, в какой форме это вещество переносилось и какими агентами оно осаждается, образуются обломочные, глинистые, хемогенные или биогенные породы.

 

                         Пластическая деформация слоев

В результате действия пластических деформаций горных пород  возникает нарушенное залегание  слоёв земной коры без видимого разрыва  их сплошности. Такие формы нарушений называют пликативными дислокациями. К ним относится образование моноклиналей, складок и флексур.

Горные породы в земной коре находятся под нагрузкой  вышележащих образований, создающей  в них соответствующий уровень  напряжений. Пластические деформации, приводящие к складчатости в горных породах, возможны только при избыточном давлении по одному из направлений (стресс). Форма и размеры возникающих  складок зависят от многих условий. Основное значение имеют физические (реологические) свойства пород, кинематическая и динамическая обстановка, характер возникающих в породе напряжений и влияние внешней среды. В  процессе деформации происходит непрерывное  перемещение материала, нередко  его перекристаллизация, а также  привнос нового вещества, что приводит к изменению реакции пород даже на одинаковый по величине и направлению стресс.

При прочих равных условиях интенсивность складчатости зависит от физических свойств пород, главным образом от их вязкости. Чем ниже вязкость, тем сложнее  и мельче складки и, наоборот, в  породах с высокой вязкостью  развивается крупная и простая  по строению складчатость. В мощных покровах лав и полнокристаллических породах складки встречаются  относительно редко. Наиболее благоприятна для образования складок обстановка сжатия, так как сжатие уменьшает  объем тела и увеличивает его  пластичность.

Влияние всестороннего  давления на развитие складчатости двоякое: с одной стороны, оно повышает сопротивление тела пластической деформации, а с другой - тот же фактор сильно понижает пределы упругости и прочности. В связи с этим породы, являющиеся хрупкими при нормальных условиях, например известняки, мраморы, могут стать пластичными на глубине при высоком всестороннем давлении.

Большое значение имеет температура окружающей среды. Повышение температуры ведет к повышению пластичности, и даже такие хрупкие при обычной температуре тела, как дайки, плутоны интрузивных пород или кварцевые жилы, при температуре в сотни градусов становятся способными изгибаться в мелкие складки Способность сминаться в достаточно мелкие и сложные складки наблюдается и в не вполне остывших массивах интрузивных пород и тем более в породах, подвергающихся воздействию регионального метаморфизма.

Скорость деформации -  также один из основных факторов влияющих на пластические свойства горных пород. Повышение скорости деформации приводит к увеличению сопротивления пород и понижению их пластичности.

Соприкосновение пород с растворами того же состава  повышает их способность пластично  деформироваться, но присутствие в  порах жидкостей другого состава, например воды, создает впутрипоровое давление, снимающее внешнюю нагрузку, что понижает пластичные свойства пород и увеличивает их хрупкость.

Кроме перечисленных  выше свойств горных пород большое  влияние на образование складок  оказывает ползучесть материалов, выражающаяся в способности всех без исключения горных пород пластично деформироваться  при напряжениях ниже предела  упругости, но при обязательном длительном действии напряжений. Благодаря ползучести деформация в теле при сохранении одинакового значения нагрузки непрерывно возрастает, причем нарастающая часть  деформации будет остаточной. Ползучесть развивается при любых напряжениях  и именно с ней связано образование  многих складок в горных породах.

Моноклинальное  залегание образуется тогда, когда горизонтально залегающие породы в результате тектонических движений приобрели наклон под одним углом на значительном пространстве. Моноклиналь это наиболее простая форма пликативных дислокаций, широко проявлена в чехлах молодых и древних платформ. Существуют слабонаклонные (до 15o), пологие (16-30o), крутые (30-75o), поставленные на голову (80-90o) моноклинали.

Складчатые деформации или складки - это волнообразные изгибы пластов без разрыва сплошности пород. Этот тип дислокаций проявлен наиболее широко. Во всех типах складок различают несколько основных элементов.

Часть складки  в месте перегиба слоёв называется замком, сводом или ядром. Крылья - боковые части складок, примыкающие к своду. Угол складки - угол, образованный линиями, являющимися продолжением крыльев складки. Осевая поверхность складки - воображаемая плоскость, проходящая через точки перегиба слоёв и делящая угол складки пополам. Осевая линия (ось складки) - линия пересечения осевой поверхности с горизонтальной плоскостью или с поверхностью рельефа. Осевая линия характеризует ориентировку складки в плане и определяется азимутом простирания. Шарнир складки - линия пересечения осевой поверхности складки с поверхностью одного из слоёв, составляющих складку. Он характеризует строение складки вдоль осевой поверхности (по вертикали) и определяется азимутом и углом погружения или воздымания. Размеры складок характеризуются длиной, шириной, высотой. Длина складки - это расстояние вдоль осевой линии между смежными перегибами шарнира. Ширина складки - расстояние между осевыми линиями двух соседних антиклиналей или синклиналей. Высотой складки называется расстояние по вертикали между замком антиклинали и замком смежной с ней синклинали.  

 

Элементы залегания  складок

Складки, пласты которых выгнуты кверху, называются антиклиналями. У этих складок в  ядре на дневной поверхности обнажаются более древние породы, а на крыльях - более молодые и они наклонены  от ядра. Складки, пласты которых прогнуты книзу, называются синклиналями. У них  в ядре обнажаются более молодые  породы, и крылья наклонены к ядру. Это две основные формы складок.  

 

В зависимости  от положения осевой поверхности  в пространстве выделяют следующие  разновидности складок.

1)Прямые складки - осевая поверхность вертикальна, а крылья падают в разные стороны под одинаковыми углами.

2)Наклонные складки - осевая поверхность наклонена к горизонту, а крылья падают в разные стороны под разными углами.

3)Опрокинутые складки - осевая поверхность круто наклонена, а крылья падают (наклонены) в одну сторону под разными углами. В этих складках различают нормальное и опрокинутое крылья.

4)Лежачие складки - осевая поверхность параллельна горизонтальной поверхности. Крылья наклонены в одну сторону под одним углом.

Форма складок  зависит также от соотношения  крыльев и замка. В зависимости  от этого складки могут быть острыми, когда крылья образуют острый угол (до 90o), тупыми, с углом более 90o,изоклинальными, с параллельным расположением крыльев и тупым замком, веерообразными, с пережимом крыльев, сундучными с пологим широким замком.    В продольном сечении складки бывают линейными, у которых длина превышает ширину более чем в три раза, брахиформными, с отношением длины к ширине меньше трёх и куполовидными, с примерно одинаковыми размерами длины и ширины складки.

Шарнир складки  по простиранию часто испытывает погружение или воздымание и представляет не прямую, а волнистую линию. Это явление называется ундуляцией. В этом случае наблюдается замыкание складки, когда одно крыло вдоль оси постепенно переходит в другое. В антиклинальных складках такое замыкание называется периклинальным, а в синклинальных - центриклинальным.

Разновидностями антиклинальных складок  являются диапировые складки и соляные купола. Их образование связано с присутствием в ядрах этих складок пластичных пород (глин, солей, гипса), которые, под действием огромного давления вышележащих пород, выжимаются и внедряются в эти породы, образуя пологий свод и крутые боковые поверхности.

Диапировая складка: 1 - вмещающие породы, 2 - пластичные породы ядра, 3 - соляная шляпа, 4 - разрывные нарушения

Наиболее широко развитыми разновидностями диапировых складок являются соляные купола и глиняные диапиры. В соляных куполах различают ядро, сложенное пластичными породами и более хрупкие вмещающие породы. Ядро носит черты активного протыкания, а вмещающие породы пассивно приспосабливаются к движению ядра. Очень часто соль в ядре имеет форму цилиндрического столба, образуя «соляной шток». При внедрении соляных масс свод купола подвергается растяжению и в нём, могут возникнуть многочисленные трещины и разломы. С соляными куполами часто связаны промышленные скопления нефти и газа. Пластичные породы, будучи вовлечены в процесс сжатия, вместе с окружающими их хрупкими породами выжимаются из крыльев в ядра антиклиналей. При благоприятных условиях они могут прорвать перекрывающие породы и образовать диапировые складки.

Соляной купол 

Складки часто  собраны в группы и образуют параллельные, кулисообразные, четковидные, пучкообразные сообщества. Сложные линейно-складчатые структуры образуют синклинории и антиклинории. 

Антиклинории - это крупные, сложнопостроенные антиклинальные структуры, протяженностью сотни и даже тысячи километров. Они включают множество более мелких антиклинальных и синклинальных складок.

Синклинории - это такие же крупные, сложнопостроенные, но в целом синклинальные структуры, осложненные синклинальными и антиклинальными складками более низких порядков. Сочетание антиклинориев и синклинориев образует горные хребты и горные системы.

Разновидностью  крупных складок являются флексуры, которые представляют собой коленообразные или ступенчатые перегибы слоёв или пластов. В области перегиба мощности слагающих флексуру пластов несколько уменьшаются и часто возникают разрывы. Части флексуры, расположенные по обе стороны от перегиба называются крыльями. Выделяется смыкающее крыло, оставшееся на месте и нижнее - опущенное крыло. Вертикальная амплитуда смещения может составлять десятки, и даже сотни метров. Флексуры обычно ограничивают крупные платформенные структуры, такие как синеклизы, краевые прогибы и др.

Информация о работе Инженерная геология