Автор: Пользователь скрыл имя, 18 Мая 2015 в 16:09, реферат
Соленость и хлорность выражаются через вес на единицу количества (1кг) морской воды. Однако при химических исследованиях часто необходимо знать количество растворенного вещества в определенном объеме морской воды. Поэтому было введено понятие “хлористости”, как числа граммов хлорида на 1 л морской воды при 200 С. Величина хлористости может быть определена путем умножения величины хлорности на удельный вес морской воды при 200 С.
1. Химический состав морской воды --- 1
2. Газы, растворенные в морской воде --- 4
3. Электрохимические процессы в океане --- 6
4. Обмен двуокисью углерода между атмосферой и океаном --- 7
5. Радиоактивные элементы в морской воде и глубоководных осадках --- 10
Заключение --- 13
Список использованной литературы --- 13
МБОУ Кадетская школа №1 им. Ф.Ф. Ушакова.
Реферат по геохимии на тему:
Геохимия океана. Происхождение океана.
Выполнил:
Ученик 10 класса
Соколов Алексей Сергеевич
Научный руководитель:
Прудаева Людмила Ивановна
г. Хабаровск, 2013г.
Содержание:
Содержание 2
1. Химический состав морской воды --- 1
2. Газы, растворенные в морской воде --- 4
3. Электрохимические процессы в океане --- 6
4. Обмен двуокисью углерода между атмосферой и океаном --- 7
5. Радиоактивные элементы в морской воде и глубоководных осадках --- 10
Заключение --- 13
Список использованной литературы --- 13
1. Химический состав морской воды
Главные и малые химические компоненты морской воды. (табл. 3 и 4).
Таблица 1. Химический состав морской воды.
Ионы |
Химический состав соли морской воды при хлорности 19 %о (Lyman, Fleming, 1940), % |
Главные компоненты морской воды, имеющей хлорность 19%о и r20=1,0243 (Lyman, Fleming, 1940) | |
Г/кг |
Мг х атом/л | ||
Na+ K+ Mg2+ Ca2+ Sr2+ Cl- Br- So2-4 HCO-3 H3BO3 |
30,61 1,10 3,69 1,16 0,03 55,4 0,19 7,68 0,41 0,07 |
10,56 0,38 1,27 0,40 0,08 18,98 0,065 2,65 0,14 0,026 |
470,15 0,96 53,57 10,24 0,09 548,30 0,83 28,24 2,34 0,43 |
Таблица 2. Малые компоненты морской воды.
Элементы |
Содержание, Мг/л |
Элементы |
Содержание, Мг/л |
Элементы |
Содержание, Мг/л |
He Li N Al Si P Ar Sc Ti V Cr Mn Fe Co Ni Cu |
0,0001 0,2 0,5 0,01 3 0,07 0,6 0,00004 0,001 0,001 0,00005 0,002 0,01 0,0005 0,0005 0,003 |
Zn Ga Ge As Se Br Kr Rb Sr Y Mo Ag Cd In Sn Sb |
0,01 0,0005 <0,0001 0,003 0,004 65 0,0003 0,3 8 0,0003 0,01 0,003 0,000055 <0,02 0,003 <0,0005 |
I Xe Cs Ba La Ce W Au Hg Tl Pb Bi Rn Ra Th U |
0,04 0,0001 0,001 0,9 0,0003 0,0004 0,0001 0,000004 0,00003 <0,00001 0,003 0,0002 9,0х10-15 3,0х10-11 0,0007 0,002 |
Соленость и содержание хлора в морской воде.
Точно определить содержание соли в морской воде затруднительно, так как при выпаривании морской воды досуха часть бикарбоната разлагается, а часть хлорида гидролизуется, поэтому было дано следующее определение понятие “солености”:
Соленость – это общее содержание твердого остатка в 1 кг морской воды, определенного после того, как весь карбонат переведен в окись, бром и йод и замещены хлором, а органическое вещество полностью окислено.
Кнудсен приводит следующую эмпирическую зависимость между хлорностью (Cl,%) и соленостью (S,%):
S=0,03+1,8050Cl,
Где Cl – “общее количество хлора в граммах, содержащееся в 1 кг морской воды после полного замещения брома и йода хлором или хлорность – это величина в граммах на 1 кг пробы морской воды, равная цифровой величине массы в граммах “серебра атомного веса”, необходимого для осаждения галогенов в пробе морской воды весом в 0,3285233 кг.
Соленость и хлорность выражаются через вес на единицу количества (1кг) морской воды. Однако при химических исследованиях часто необходимо знать количество растворенного вещества в определенном объеме морской воды. Поэтому было введено понятие “хлористости”, как числа граммов хлорида на 1 л морской воды при 200 С. Величина хлористости может быть определена путем умножения величины хлорности на удельный вес морской воды при 200 С.
2. Газы, растворенные в морской воде.
Кислород. Растворенный в морской воде кислород заимствуется из атмосферы на контакте воды с воздухом. Он образуется также при фотосинтезе морских растений. С другой стороны, кислород потребляется при дыхании живых организмов и при окислении различных веществ моря, главным образом органического детрита.
Растворимость кислорода в морской воде зависит от температуры и солености; эта зависимость может быть выражена формулой Якобсона:
V(O2)= 10,062-0,2822-0,006144t2-0,
Где V(O2) – растворимость кислорода в 1 см3 на 1 л морской воды при нормальных температуре и давлении в условиях равновесия воды и воздуха при нормальном давлении; Cl- хлорность; t – температура воды, оС.
Интересно, что во всех океанах существует слой с минимальным содержанием кислорода, глубина которого меняется в зависимости от географии.
Однако Ричардс и Редфилд [1955] указывают, что слои с минимальным содержанием кислорода в океане наиболее часто приурочены к поверхности одной и той же плотности - st = 27,2 / 27,3.
Свердруп [1938] рассмотрел возможные причины равновесия между динамическим притоком и биохимическим потреблением в слое минимального содержания кислорода. Считал что, существование слоя с минимальным содержанием кислорода обусловлено главным образом биохимическим расходом кислорода и характером распределения в море органического вещества и сделал заключение, что важной причиной минимума кислородного содержания является существование в океане горизонта перерыва.
Рейкстро [1947] определял скорости расхода кислорода в пробах воды, отобранных на поверхности, в слое с минимальным содержанием кислорода и в глубоководном слое. При этом начальная температура проб в течение длительного времени поддерживалась постоянной. Он установил, что расход кислорода за два года в воде слоя с минимальным содержанием, равно как и в воде глубоководного слоя, весьма незначителен. С другой стороны, поверхностная вода после небольшого выдерживания приобрела ту же концентрацию кислорода, что и пробы воды из слоя с минимальным содержанием кислорода. Рейкстро высказал предположение, что органическое вещество в вертикальной колонне воды, по крайней мере до слоя с минимальным содержанием кислорода, поступает с ее собственной площади поверхности и этим объясняется дефицит кислорода.
Мияки и Сарухаши [1956] исследовав причины вертикальной миграции в море растворенного кислорода, пришли к выводы, что дефицит кислорода тесно связан с увеличением содержания в морской воде углекислоты и с локально протекающим окислительным разложением органического вещества.
Первое исследование изотопного состава растворенного в морской воде воздушного кислорода было проведено Рейкстро, Раддом и Доулом.
Результаты масс-спектрометрических определений показали, что между величиной отношения О18/О16 и количеством кислорода, растворенного в морской воде на разной глубине, существует значительное расхождение отрицательного знака. Использовав в качестве стандарта отношение О18/О16 в воздухе (0,2039%), удалось установить, что разница между процентным содержанием О18 и таковым воздуха с глубиной постепенно возрастает, достигая максимума в +0,006% в слое с минимальным содержанием кислорода, располагающемся на глубине около 700 м. После прохождения слоя с минимальным содержанием кислорода d снова уменьшается, падая на глубине 2870 м примерно до +0,001%. Доул [1952] установил, что кислород, освобождающийся при фотосинтезе, имеет более низкую величину отношения О18/О16, чем атмосферный кислород; по его данным, фактор фракционирования равен 0,983. Это должно приводить к уменьшению относительного количества О18 в растворенном в морской воде кислороде, так как этот кислород частично производится фитопланктоном.
С другой стороны, кислород в морской воде поглощается при дыхании живых организмов, при бактериальных процессах, при окислении органического детрита и т.д.; при этом легкий изотоп кислорода поглощается избирательно. Вследствие этого следует ожидать, что находящийся в воде остаточный кислород по сравнению с воздухом должен быть относительно обогащен О18. По данным определений Доула [1954], фактор фракционирования изотопов кислорода при процессах поглощения кислорода, растворенного в морской воде, равен 0,991. Необходимо отметить, что азот в газе, растворенном в воде океана, так же как и атмосферный азот, имеет нормальный изотопный состав.
Азот и редкие газы. Растворимость азота в морской воде описывается следующей формулой Фокса:
V(N2)=18,639-0,4304t /
0,00745t2-0,0000549t3-Cl(0,
Результаты определений показывают, что содержание растворенного азота, а также аргона, неона и гелия, в отличие от кислорода мало изменяется с глубиной и всегда близко к насыщению.
В таблице 5 приведен пример данных о вертикальных вариациях содержания растворенных в воде неона и гелия в Атлантическом океане.
Таблица 3. Вариации содержания в морской воде растворенных неона и гелия (Rakestraw и др., 1939).
Атлантический океан (35о55’ с.ш. и 67о39’ з.д.), апрель | |||
Глубина, м |
Температура, оС |
Содержание кислорода, см3/л |
Содержание He+Ne 10-5 см3/л |
0 5 25 62 166 333 622 912 1772 2959 |
18,28 18,31 17,97 17,93 17,92 17,63 15,62 9,55 3,86 3,16 |
5,14 5,15 5,05 5,17 5,15 4,90 4,10 3,60 5,88 6,15 |
18,5 14,1 15,2 15,2 15,2 15,6 15,9 15,9 16,5 17,8 |
3. Электрохимические процессы в океане
Поскольку морская вода представляет собой электролит, то естественно, что в океане протекают разнообразные электрохимические процессы.
Морская вода является проводником электричества, поэтому при ее движении через магнитное поле Земли в соответствии с законом электроиндукции возникает э.д.с.
Зависимость между разницей потенциалов и скоростью течения воды в океане имеет следующий вид:
Ñ2j=H rot u,
где Н –интенсивность магнитного поля Земли; u -скорость течения; j - разница потенциалов.
Электрические токи в океане, вызванные совместным действием земного магнетизма и движения воды, могут влиять на многие подводные вопросы. Например, подводный кабель, проложенный по дну узкого пролива с сильными приливно-отливными течениями, будет очень быстро корродироваться. В настоящее время получено подтверждение предположения автора о том, что коррозия начинается под воздействием электрического тока, изменяющегося в зависимости от приливного течения; коррозия ускоряется под воздействием вторичной поляризации, возникающей на корродированной поверхности кабеля.
Другое электрохимическое явление океана заключается в возникновении концентрационных ячеек. Разность потенциалов Е определяется по формуле:
Где С1 и С2 – концентрации известных ионов. В открытом океане величина отношения С1/С2 близка к 1, и поэтому здесь трудно ожидать возникновения большой разницы потенциалов.
Более того, ввиду присутствия в воде растворенного кислорода, часто обладающего значительным градиентом концентрации, наблюдается значительный окислительно-восстановительный потенциал. Если на борту корабля поместить каломелевый полуэлемент, а в воду погрузить платиновый электрод, то можно легко измерить разность потенциалов между электродами, изменяющуюся с глубиной в зависимости от содержания кислорода.
Номура [1941] установил, что в мелководной зоне моря между придонным и верхним слоями воды может возникать значительная разность потенциалов, достигающая иногда 0,4 в. в пресной и солоноватой воде, когда буферные реакции слабы, окислительно-восстановительный потенциал близок величине рН.
Гольдберг [1954] считает, что в основе образования марганцевых конкреций, встречаемых в глубоководной зоне лежит электрохимический процесс аккумуляции марганца и железа.
Последние исследования глубоководной зоны установили, что морская вода испытывает перемещения даже близ самого дна. Вследствие этого верхняя часть дна океана будет служить электродом. Если подводные перемещения воды связывать с приливными движениями, то дно – электрод должно попеременно приобретать разную полярность. Соли окиси марганца в морской воде, имеющие отрицательный заряд, будут осаждаться вследствие электрофореза при положительном заряде электрода, а железо будут осаждаться при приобретении электродом отрицательного заряда. Если полярность электрода изменяется через одинаково равные промежутки времени, то в конкрециях будет аккумулироваться равное количество железа и марганца.
4. Обмен двуокисью углерода между атмосферой и океаном
Атмосферный воздух в среднем содержит 0,03 об % углекислоты. Общее содержание двуокиси углерода в атмосфере оценивается в 0,0233 х 1020 г. В океане двуокись углерода присутствует в виде Н2СО3, НСО-3, СО2-3, органического вещества; общее ее содержание оценивается в 1,4 х 1020 г, что примерно в 60 раз превосходит ее количество в атмосфере.
По расчетным данным наибольшее количество углекислоты производится живыми организмами, в то же время предполагается, что количество углекислоты, расходующееся при эрозии и седиментации, сопровождаемых преобразованием силикатов в карбонаты, приблизительно равно ее количеству, поступающему за счет вулканической деятельности, деятельности фумарол, горячих источников и т.п.