Геохимия океана. Происхождение океана

Автор: Пользователь скрыл имя, 18 Мая 2015 в 16:09, реферат

Краткое описание

Соленость и хлорность выражаются через вес на единицу количества (1кг) морской воды. Однако при химических исследованиях часто необходимо знать количество растворенного вещества в определенном объеме морской воды. Поэтому было введено понятие “хлористости”, как числа граммов хлорида на 1 л морской воды при 200 С. Величина хлористости может быть определена путем умножения величины хлорности на удельный вес морской воды при 200 С.

Оглавление

1. Химический состав морской воды --- 1
2. Газы, растворенные в морской воде --- 4
3. Электрохимические процессы в океане --- 6
4. Обмен двуокисью углерода между атмосферой и океаном --- 7
5. Радиоактивные элементы в морской воде и глубоководных осадках --- 10
Заключение --- 13
Список использованной литературы --- 13

Файлы: 1 файл

Геохимия океана сокр.docx

— 56.64 Кб (Скачать)

МБОУ Кадетская школа №1 им. Ф.Ф. Ушакова.

Реферат по геохимии на тему:

Геохимия океана. Происхождение океана.

Выполнил:

Ученик 10 класса

Соколов Алексей Сергеевич

Научный руководитель:

Прудаева Людмила Ивановна

г. Хабаровск, 2013г.

Содержание:

Содержание 2

1. Химический состав морской воды --- 1

2. Газы, растворенные в морской воде --- 4

3. Электрохимические процессы в океане --- 6

4. Обмен двуокисью углерода между атмосферой и океаном --- 7

5. Радиоактивные элементы в морской воде и глубоководных осадках --- 10

Заключение --- 13

Список использованной литературы --- 13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Химический состав морской воды

Главные и малые химические компоненты морской воды. (табл. 3 и 4).

 

Таблица 1. Химический состав морской воды.

Ионы

Химический состав соли морской воды при хлорности 19 %о (Lyman, Fleming, 1940), %

Главные компоненты морской воды, имеющей хлорность 19%о и r20=1,0243 (Lyman, Fleming, 1940)

   

Г/кг

Мг х атом/л

Na+

K+

Mg2+

Ca2+

Sr2+

Cl-

Br-

So2-4

HCO-3

H3BO3

30,61

1,10

3,69

1,16

0,03

55,4

0,19

7,68

0,41

0,07

10,56

0,38

1,27

0,40

0,08

18,98

0,065

2,65

0,14

0,026

470,15

0,96

53,57

10,24

0,09

548,30

0,83

28,24

2,34

0,43


Таблица 2. Малые компоненты морской воды.

Элементы

Содержание,

Мг/л

Элементы

Содержание,

Мг/л

Элементы

Содержание,

Мг/л

He

Li

N

Al

Si

P

Ar

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

0,0001

0,2

0,5

0,01

3

0,07

0,6

0,00004

0,001

0,001

0,00005

0,002

0,01

0,0005

0,0005

0,003

Zn

Ga

Ge

As

Se

Br

Kr

Rb

Sr

Y

Mo

Ag

Cd

In

Sn

Sb

0,01

0,0005

<0,0001

0,003

0,004

65

0,0003

0,3

8

0,0003

0,01

0,003

0,000055

<0,02

0,003

<0,0005

I

Xe

Cs

Ba

La

Ce

W

Au

Hg

Tl

Pb

Bi

Rn

Ra

Th

U

0,04

0,0001

0,001

0,9

0,0003

0,0004

0,0001

0,000004

0,00003

<0,00001

0,003

0,0002

9,0х10-15

3,0х10-11

0,0007

0,002


Соленость и содержание хлора в морской воде.

Точно определить содержание соли в морской воде затруднительно, так как при выпаривании морской воды досуха часть бикарбоната разлагается, а часть хлорида гидролизуется, поэтому было дано следующее определение понятие “солености”:

Соленость – это общее содержание твердого остатка в 1 кг морской воды, определенного после того, как весь карбонат переведен в окись, бром и йод и замещены хлором, а органическое вещество полностью окислено.

Кнудсен приводит следующую эмпирическую зависимость между хлорностью (Cl,%) и соленостью (S,%):

S=0,03+1,8050Cl,

Где Cl – “общее количество хлора в граммах, содержащееся в 1 кг морской воды после полного замещения брома и йода хлором или хлорность – это величина в граммах на 1 кг пробы морской воды, равная цифровой величине массы в граммах “серебра атомного веса”, необходимого для осаждения галогенов в пробе морской воды весом в 0,3285233 кг.

Соленость и хлорность выражаются через вес на единицу количества (1кг) морской воды. Однако при химических исследованиях часто необходимо знать количество растворенного вещества в определенном объеме морской воды. Поэтому было введено понятие “хлористости”, как числа граммов хлорида на 1 л морской воды при 200 С. Величина хлористости может быть определена путем умножения величины хлорности на удельный вес морской воды при 200 С.

2. Газы, растворенные в морской воде.

Кислород. Растворенный в морской воде кислород заимствуется из атмосферы на контакте воды с воздухом. Он образуется также при фотосинтезе морских растений. С другой стороны, кислород потребляется при дыхании живых организмов и при окислении различных веществ моря, главным образом органического детрита.

Растворимость кислорода в морской воде зависит от температуры и солености; эта зависимость может быть выражена формулой Якобсона:

V(O2)= 10,062-0,2822-0,006144t2-0,000061t3-Cl(0,1073-0,003586t+0,000055t2),

Где V(O2) – растворимость кислорода в 1 см3 на 1 л морской воды при нормальных температуре и давлении в условиях равновесия воды и воздуха при нормальном давлении; Cl- хлорность; t – температура воды, оС.

Интересно, что во всех океанах существует слой с минимальным содержанием кислорода, глубина которого меняется в зависимости от географии.

Однако Ричардс и Редфилд [1955] указывают, что слои с минимальным содержанием кислорода в океане наиболее часто приурочены к поверхности одной и той же плотности - st = 27,2 / 27,3.

Свердруп [1938] рассмотрел возможные причины равновесия между динамическим притоком и биохимическим потреблением в слое минимального содержания кислорода. Считал что, существование слоя с минимальным содержанием кислорода обусловлено главным образом биохимическим расходом кислорода и характером распределения в море органического вещества и сделал заключение, что важной причиной минимума кислородного содержания является существование в океане горизонта перерыва.

Рейкстро [1947] определял скорости расхода кислорода в пробах воды, отобранных на поверхности, в слое с минимальным содержанием кислорода и в глубоководном слое. При этом начальная температура проб в течение длительного времени поддерживалась постоянной. Он установил, что расход кислорода за два года в воде слоя с минимальным содержанием, равно как и в воде глубоководного слоя, весьма незначителен. С другой стороны, поверхностная вода после небольшого выдерживания приобрела ту же концентрацию кислорода, что и пробы воды из слоя с минимальным содержанием кислорода. Рейкстро высказал предположение, что органическое вещество в вертикальной колонне воды, по крайней мере до слоя с минимальным содержанием кислорода, поступает с ее собственной площади поверхности и этим объясняется дефицит кислорода.

Мияки и Сарухаши [1956] исследовав причины вертикальной миграции в море растворенного кислорода, пришли к выводы, что дефицит кислорода тесно связан с увеличением содержания в морской воде углекислоты и с локально протекающим окислительным разложением органического вещества.

Первое исследование изотопного состава растворенного в морской воде воздушного кислорода было проведено Рейкстро, Раддом и Доулом.

Результаты масс-спектрометрических определений показали, что между величиной отношения О18/О16 и количеством кислорода, растворенного в морской воде на разной глубине, существует значительное расхождение отрицательного знака. Использовав в качестве стандарта отношение О18/О16 в воздухе (0,2039%), удалось установить, что разница между процентным содержанием О18 и таковым воздуха с глубиной постепенно возрастает, достигая максимума в +0,006% в слое с минимальным содержанием кислорода, располагающемся на глубине около 700 м. После прохождения слоя с минимальным содержанием кислорода d снова уменьшается, падая на глубине 2870 м примерно до +0,001%. Доул [1952] установил, что кислород, освобождающийся при фотосинтезе, имеет более низкую величину отношения О18/О16, чем атмосферный кислород; по его данным, фактор фракционирования равен 0,983. Это должно приводить к уменьшению относительного количества О18 в растворенном в морской воде кислороде, так как этот кислород частично производится фитопланктоном.

С другой стороны, кислород в морской воде поглощается при дыхании живых организмов, при бактериальных процессах, при окислении органического детрита и т.д.; при этом легкий изотоп кислорода поглощается избирательно. Вследствие этого следует ожидать, что находящийся в воде остаточный кислород по сравнению с воздухом должен быть относительно обогащен О18. По данным определений Доула [1954], фактор фракционирования изотопов кислорода при процессах поглощения кислорода, растворенного в морской воде, равен 0,991. Необходимо отметить, что азот в газе, растворенном в воде океана, так же как и атмосферный азот, имеет нормальный изотопный состав.

Азот и редкие газы. Растворимость азота в морской воде описывается следующей формулой Фокса:

V(N2)=18,639-0,4304t / 0,00745t2-0,0000549t3-Cl(0,2172-0,00718t+0,0000952t2).

Результаты определений показывают, что содержание растворенного азота, а также аргона, неона и гелия, в отличие от кислорода мало изменяется с глубиной и всегда близко к насыщению.

В таблице 5 приведен пример данных о вертикальных вариациях содержания растворенных в воде неона и гелия в Атлантическом океане.

Таблица 3. Вариации содержания в морской воде растворенных неона и гелия (Rakestraw и др., 1939).

Атлантический океан (35о55’ с.ш. и 67о39’ з.д.), апрель

Глубина, м

Температура, оС

Содержание кислорода, см3/л

Содержание He+Ne

10-5 см3/л

0

5

25

62

166

333

622

912

1772

2959

18,28

18,31

17,97

17,93

17,92

17,63

15,62

9,55

3,86

3,16

5,14

5,15

5,05

5,17

5,15

4,90

4,10

3,60

5,88

6,15

18,5

14,1

15,2

15,2

15,2

15,6

15,9

15,9

16,5

17,8


3. Электрохимические процессы в океане

Поскольку морская вода представляет собой электролит, то естественно, что в океане протекают разнообразные электрохимические процессы.

Морская вода является проводником электричества, поэтому при ее движении через магнитное поле Земли в соответствии с законом электроиндукции возникает э.д.с.

Зависимость между разницей потенциалов и скоростью течения воды в океане имеет следующий вид:

Ñ2j=H rot u,

где Н –интенсивность магнитного поля Земли; u -скорость течения; j - разница потенциалов.

Электрические токи в океане, вызванные совместным действием земного магнетизма и движения воды, могут влиять на многие подводные вопросы. Например, подводный кабель, проложенный по дну узкого пролива с сильными приливно-отливными течениями, будет очень быстро корродироваться. В настоящее время получено подтверждение предположения автора о том, что коррозия начинается под воздействием электрического тока, изменяющегося в зависимости от приливного течения; коррозия ускоряется под воздействием вторичной поляризации, возникающей на корродированной поверхности кабеля.

      Другое электрохимическое явление океана заключается в возникновении     концентрационных ячеек. Разность потенциалов Е определяется по формуле:


 

 

Где С1 и С2 – концентрации известных ионов. В открытом океане величина отношения С1/С2 близка к 1, и поэтому здесь трудно ожидать возникновения большой разницы потенциалов.

Более того, ввиду присутствия в воде растворенного кислорода, часто обладающего значительным градиентом концентрации, наблюдается значительный окислительно-восстановительный потенциал. Если на борту корабля поместить каломелевый полуэлемент, а в воду погрузить платиновый электрод, то можно легко измерить разность потенциалов между электродами, изменяющуюся с глубиной в зависимости от содержания кислорода.

Номура [1941] установил, что в мелководной зоне моря между придонным и верхним слоями воды может возникать значительная разность потенциалов, достигающая иногда 0,4 в. в пресной и солоноватой воде, когда буферные реакции слабы, окислительно-восстановительный потенциал близок величине рН.

Гольдберг [1954] считает, что в основе образования марганцевых конкреций, встречаемых в глубоководной зоне лежит электрохимический процесс аккумуляции марганца и железа.

Последние исследования глубоководной зоны установили, что морская вода испытывает перемещения даже близ самого дна. Вследствие этого верхняя часть дна океана будет служить электродом. Если подводные перемещения воды связывать с приливными движениями, то дно – электрод должно попеременно приобретать разную полярность. Соли окиси марганца в морской воде, имеющие отрицательный заряд, будут осаждаться вследствие электрофореза при положительном заряде электрода, а железо будут осаждаться при приобретении электродом отрицательного заряда. Если полярность электрода изменяется через одинаково равные промежутки времени, то в конкрециях будет аккумулироваться равное количество железа и марганца.

4. Обмен двуокисью углерода между атмосферой и океаном

Атмосферный воздух в среднем содержит 0,03 об % углекислоты. Общее содержание двуокиси углерода в атмосфере оценивается в 0,0233 х 1020 г. В океане двуокись углерода присутствует в виде Н2СО3, НСО-3, СО2-3, органического вещества; общее ее содержание оценивается в 1,4 х 1020 г, что примерно в 60 раз превосходит ее количество в атмосфере.

По расчетным данным наибольшее количество углекислоты производится живыми организмами, в то же время предполагается, что количество углекислоты, расходующееся при эрозии и седиментации, сопровождаемых преобразованием силикатов в карбонаты, приблизительно равно ее количеству, поступающему за счет вулканической деятельности, деятельности фумарол, горячих источников и т.п.

Информация о работе Геохимия океана. Происхождение океана