Измерения, единицы измерения, погрешности измерения

Автор: Пользователь скрыл имя, 27 Декабря 2012 в 23:08, реферат

Краткое описание

В практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются измерения таких величин, как длина, объем, вес, время и др.
Измерения являются одним из важнейших путей познания природы человеком. Они дают количественную характеристику окружающего мира, раскрывая человеку действующие в природе закономерности.

Оглавление

Вступление
1.Измерения
2. Метрологическое обеспечение измерений в спорте. Единицы измерения
2.1Шкалы измерений
3.Погрешности измерений
3.1.Систематические и случайные ошибки
3. 2. Абсолютные и относительные ошибки измерений
Заключение
Список литературы

Файлы: 1 файл

Физ-ра (2).doc

— 61.00 Кб (Скачать)

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ТОРГОВЛИ ИМЕНИ М.ТУГАН-БАРАНОВСКОГО

 

 

 

Кафедра физического  воспитания

 

 

 

 

Реферат на тему: «Измерения, единицы измерения, погрешности измерения.»

 

 

 

 

Подготовила:

Студентка 2 курса

ИЭУ

Группа ЭП-11-А

Сорокина Я.В.

 

 

 

 

 

 

 

 

 

Донецк 2012 
План:

Вступление

1.Измерения

2. Метрологическое обеспечение  измерений в спорте. Единицы измерения

2.1Шкалы измерений

3.Погрешности измерений

3.1.Систематические и случайные ошибки

         3. 2. Абсолютные и относительные ошибки измерений

Заключение

Список литературы

 

 

 

Вступление

В практической жизни  человек всюду имеет дело с  измерениями. На каждом шагу встречаются  измерения таких величин, как  длина, объем, вес, время и др.

Измерения являются одним  из важнейших путей познания природы человеком. Они дают количественную характеристику окружающего мира, раскрывая человеку действующие в природе закономерности. Все отрасли техники не могли бы существовать без развернутой системы измерений, определяющих как все технологические процессы, контроль и управление ими, так и свойства и качество выпускаемой продукций.

Отраслью науки, изучающей  измерения, является метрология. Слово "метрология" образовано из двух греческих слов: метрон - мера и логос - учение. Дословный перевод слова "метрология" - учение о мерах. Долгое время метрология оставалась в основном описательной наукой о различных мерах и соотношениях между ними. С конца 19-го века благодаря прогрессу физических наук метрология получила существенное развитие. Большую роль в становлении современной метрологии как одной из наук физического цикла сыграл Д.И. Менделеев, руководивший отечественной метрологией в период 1892 - 1907 гг.

 

1.Измерения

Измерением какой-либо физической величины называется операция, в результате которой определяется, во сколько раз эта величина больше (или меньше) другой величины, принятой за эталон. Так, за эталон длины принят метр, и, приводя измерения в соревнованиях или в тесте, мы узнаём, сколько метров, например, содержится в результате, показанном спортсменом, в прыжке в длину, в толкании ядра и т. д.Точно так же можно измерить время движений, мощность, развиваемую при их выполнении ,и т. п.

Внедрение научно-технического прогресса в физическое воспитание и спорт начинается с комплексного контроля. Информация, получаемая здесь, служит основой для всех последующих действий тренеров, научных и административных работников. Тысячи тренеров и специалистов, оценивающих какие-либо показатели должны это делать одинаково. Для этого существуют стандарты на измерения.

Стандарт– это нормативно-технический документ, устанавливающий комплекс норм, правил, требований к объекту стандартизации (в данном случае, к спортивным измерениям)и утверждённый компетентным органом. Использование стандарта повышает точность, экономичность и единство измерений. Для усиления роли стандартизации в нашей стране действует Государственная система стандартизации (ГСС),содержащая организационные ,правовые, методические и практические основы этой деятельности.

 

2.Метрологическое обеспечение измерений в спорте. Единицы измерения

Метрологическое обеспечение-это применение научных и организационных основ, технических средств ,правил и норм, необходимых для достижения единства и точности измерений в физическом воспитании и спорте. Техническая основа включает в себя: систему государственных эталонов; систему разработки и выпуска средств измерений; метрологическую аттестацию и проверку средств и методов измерений; систему стандартных данных о показателях, подлежащих контролю в процессе подготовки спортсменов.

Метрологическое обеспечение направлено на то, чтобы обеспечить единство и точность измерений. Единство измерений достигается тем, что их результаты должны быть представлены в узаконенных единицах и с известной вероятностью погрешностей. В настоящее время используется международная система единиц (СИ). Основными единицами физических величин в СИ являются единицы длины - метр (м); массы – килограмм (кг); времени– секунда (с); силы электрического тока – ампер (А); термодинамической температуры – кельвин (К); силы света – кандела (кд); количества вещества –моль (моль). Дополнительные единицы СИ: радиан (рад) и стерадиан (ср) – для измерения плоского и телесного углов соответственно.

Так же используются следующие единицы измерений : силы – ньютон (Н); температуры – градусы Цельсия (*С), частоты –герц (Гц); давления – паскаль (Па); объёма – литр, миллилитр (л, мл).

Достаточно широко используются в практике внесистемные единицы. Например, мощность измеряется в лошадиных силах (л. с.), энергия – в калориях, давление –миллиметрах ртутного столба и т. д. Для перевода внесистемных единиц в СИ используются следующие отношения: 1 Н=0,102 кг (силы); 1 Нм=1 Дж (джоуль)=0,102; кгм=0,000239 ккал. Один ньютонметр слишком незначителен по величине, и поэтому работу спортсмена чаще измеряют в килоджоулях: 1 кДж=1000 Нм=0,239 ккал=102 кгм.

Интенсивность(или мощность) упражнений измеряется в ваттах: 1 Вт=1 Дж/с=1 Н.м/с=0,102 кгм/с.Соответственно 1000 Вт=1 кВт=102 кгм/с. В практике спорта широкое распространение получил такой показатель, как энерготраты (в ккал) при выполнении упражнений в единицу времени (мин):1 ккал/мин=69,767 Вт=426,85 кгм/мин =4,186кДж/мин. Используется и такая единица, как мет. Он равен:1мет=0,0175=0,0732кг

Довольно часто ,оценивая интенсивность упражнения, отмечают, что оно выполняется при потреблении кислорода на уровне, скажем, 4 л/мин. Необходимо запомнить, что при потреблении 1 л О 2 выделяется 5,05 ккал энергии и совершается работа, равная21,237 кДж. Следовательно, при выполнении этого упражнения будет затрачиваться20,2 ккал/мин, что соответствует работе в 84,95 кДж.

 

2.1Шкалы измерений

Существует четыре основные шкалы измерений:

1) Шкала наименований

Речь идёт о группировке объектов, идентичных по определённому признаку, и о присвоении им обозначений. Не случайно, что другое название этой шкалы –номинальное (от латинского слова Nome – имя).

Обозначениями, присваиваемыми объектам, являются числа. Например, легкоатлеты-прыгуны в длину в этой шкале могут обозначаться номером 1, прыгуны в высоту – 2, прыгуны тройным – 3, прыгуны с шестом – 4.При номинальных измерениях вводимая символика означает, что объект 1 только отличается от объектов 2, 3 или 4. Однако насколько отличается и в чём именно, по этой шкале измерить нельзя.

Делают это потому, что результаты измерений нужно обрабатывать. Математическая статистика ,аппарат которой используется для этого, имеет дело с числами, и группировать объекты лучше не по словесным характеристикам, а по числам.

2) Шкала порядка

Эта шкала используется там, где невозможны качественные измерения в принятой системе единиц. Например, в художественной гимнастике нужно измерить артистизм разных спортсменок. Тогда он устанавливается в виде рангов: ранг победителя – 1, второе место – 2 и т. д.

При использовании этой шкалы можно складывать и вычитать ранги и производить над ними какие-либо другие математические действия. Однако необходимо помнить, что если между второй и четвёртой спортсменками два ранга, то это вовсе не означает ,что вторая вдвое артистичнее первой.

3) Шкала интервалов

Измерения в этой шкале не только упорядочены по рангу, но и разделены определёнными интервалами. В интервальной шкале установлены единицы измерения (градус,секунда, и т. д.). Измеряемому объекту здесь присваивается число, равное количеству единиц измерения, которое он содержит. Например, температура тела спортсмена А. во время выполнения упражнения оказалась равной 39,0* С,  спортсмена В. -39,5* С.

Обработка результатов измерений в интервальной шкале позволяет определить, «на сколько больше» один объект по сравнению с другим (в приведённом выше примере=0,5*).Здесь можно использовать любые методы статистики, кроме определения отношений. Связано это с тем, что нулевая точка этой шкалы выбирается произвольно.

4)Шкала отношений

В этой шкале какая-нибудь из единиц измерения принимается за эталон, а измеряемая величина содержит столько этих единиц, во сколько раз она больше эталона. Так, сила в 600 Н, равная 6,6.с, во столько же раз больше основной единицы измерения– одного ньютона. Результаты измерений в этой шкале могут обрабатываться любыми методами математической статистики.

 

3.Погрешности измерений

3.1.Систематические и случайные ошибки

Произвести измерения  физических величин абсолютно точно  невозможно, так как всякое измерение  сопровождается той или иной ошибкой или погрешностью.

Величина систематических ошибок одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов. Различают четыре группы систематических ошибок:

А)ошибки, причина возникновения которых известна и величина которых может быть определена достаточно точно. Например, при определении результата прыжка рулеткой возможно изменение её длины за счёт различий в температуре воздуха. Это изменение можно оценить и ввести поправки в измеренный результат;

Б)ошибки, причина возникновения которых известна, а величина нет. Такие ошибки зависят от класса точности измерительной аппаратуры. Например, если класс точности динамометра для измерения силовых качеств спортсменов составляет 2.0, то его показания правильны с точностью до 2% в пределах шкалы прибора. Но если проводить несколько измерений подряд, то ошибка в первом из них может быть равной 0,3%, а во втором – 2%, в третьем – 0,7% и т. д. При этом точно определить её значения для каждого из измерений нельзя;

В)ошибки, происхождение которых и величина неизвестны. Обычно они проявляются в сложных измерениях, когда не удаётся учесть все источники возможных погрешностей;

Г)ошибки, связанные не столько с процессом измерения, сколько со свойствами объекта измерения. Как известно, объектами измерений в спортивной практике являются действия и движения спортсмена, его социальные, психологические, биохимические и т. п. показатели. Измерения такого типа характеризуются определённой вариативностью, и в её основе может быть множество причин.

Систематический контроль за спортсменами позволяет определить меру их стабильности и учитывать возможные погрешности измерений.

 

В некоторых случаях ошибки возникают по причинам, предсказать которые заранее невозможно. Такие ошибки называются случайными. Их выявляют и учитывают с помощью математического аппарата теории вероятностей.

Перед проведением любых измерений нужно определить источники систематических погрешностей и по возможности устранить их. Но так как полностью это сделать нельзя, то внесение поправок в результат измерения позволяет исправить его с учётом систематической погрешности.

Для устранения систематической погрешности используют:

а)тарирование – проверку показаний измерительных приборов путём сравнения их споказаниями эталонов во всём диапазоне возможных значений измеряемой величины;

б)калибровку – определение  погрешностей и величины поправок.

 

3. 2. Абсолютные и относительные ошибки измерений

Результат измерения любой величины отличается от истинного значения. Это отличие, равное разности между показанием прибора и истинным значением, называется абсолютной погрешностью измерения, которая выражается в тех же единицах, что и сама измеряемая величина:

Х = Хист - Хизм

Где x – абсолютная погрешность.

При проведении комплексного контроля, когда измеряются показатели разной размерности, целесообразнее пользоваться не абсолютной, а относительной погрешностью. Она определяется по следующей формуле:

Х

Хотн = -------------- * 100%

Хизм

 

Целесообразность применения Хотн связана со следующими обстоятельствами. Предположим, что мы измеряем время с точностью до 0,1 с (абсолютная погрешность). При этом, если речь идёт о беге на 10000 м, то точность вполне приемлема. Но измерять с такой точностью время реакции нельзя, так как величина ошибки почти равна измеряемой величине (время простой реакции равняется 0,12 – 0,20 с). В связи с этим нужно сопоставить величину ошибки и саму измеряемую величину, и определить относительную погрешность.

Рассмотрим пример определения абсолютной и относительной погрешностей измерения. Предположим, что измерение частоты сердечных сокращений после бега с помощью высокоточного прибора даёт нам величину, весьма близкую к истинной и равную 150уд/мин. Одновременное пальпаторное измерение даёт величину, равную 162 уд/мин.

Подставив эти значения в приведённые выше формулы, получим:

Х= 150 – 162 = 12 уд/мин –  абсолютная погрешность; Хотн = (12:150) * 100% = 8% -относительная погрешность.

Таким образом, сформировываются следующие основные правила:

-стремиться к максимально возможной точности измерений;

-уметь определять величину, тип и причины ошибок;

-научиться устранять их.

 

 

 

 

Заключение

Спортивная метрология – это наука об измерениях в физическом воспитании и спорте. Её нужно рассматривать как конкретное приложение к общей метрологии, основной задачей которой , как известно, является обеспечение точности и единства измерений. Однако, как учебная дисциплина, спортивная метрология выходит за рамки общей метрологии.

Специалисты-метрологи  основное внимание сосредотачивают на проблемах единства и точности измерений физических величин (длина, масса, время, температура, сила электрического тока, сила света и количество вещества).

В физическом воспитании и спорте некоторые из этих величин также подлежат измерению. Но более всего специалистов в области спортивной метрологи интересуют педагогические, биологические показатели, которые по своему содержанию нельзя назвать физическими. Методикой их измерений общая метрология практически не занимается, и поэтому возникла необходимость разработки специальных измерений, результаты которых всесторонне характеризуют подготовленность физкультурников и спортсменов.

Информация о работе Измерения, единицы измерения, погрешности измерения