Автор: Пользователь скрыл имя, 21 Ноября 2012 в 15:31, реферат
Компьютеризация — процесс проникновения современной вычислительной техники (ЭВМ) во все сферы бытия индивидуума и социума в целом. ЭВМ не только способствует повышению эффективности сбора, обработки и хранения информации любого уровня и объема, но и принципиальным образом расширяет познавательные возможности человека. Человек работает с компьютером в диалоговом режиме и, задавая программу ЭВМ, является ведущей подсистемой системы "человек—машина".
Введение 2
1 Компьютеризация науки, ее проблемы и следствия 5
2 Компьютеризация в науках 10
2.1 Компьютеризация в биологии 12
2.2 Компьютеризация в научной геологии 17
2.3 Компьютеризация в химии 18
3 Компьютеризация науки и ее социальные последствия 19
Заключение 25
Список используемой литературы 26
В современной биологии нашли широкое применение не только теоретические представления кибернетики. Сложность биологических процессов и описывающих их поведение математических моделей с неизбежностью ведет к использованию вычислительной техники. Компьютеры все чаще используются не только для обработки данных и уточнения параметров моделей, но и для постановки компьютерного эксперимента, во многих случаях призванного заменить дорогостоящий натурный эксперимент. Поэтому дальнейшее развитие математического моделирования в биологии видится на пути применения современных средств компьютерной математики как инструмента подготовки высококвалифицированных специалистов, построения содержательных моделей, накопления и хранения информации, полученной в результате исследования этих моделей. Биология уже созрела для такого качественного перехода, чего, к сожалению, нельзя сказать о самих биологах.
2.2 Компьютеризация в научной геологии
Компьютерное моделирование помогает ученым сформировать общий взгляд на вопросы формирования Земли. В частности формирование ледников, минералов, горных пород, ископаемых ресурсов.
Современные средства позволяют строить модели в четырех измерениях, четвертый из которых время. Так динамические модели четко определяют структуру геологических процессов. И объясняют появление многих геологических явлений.
Компьютерное моделирование применяется в разнообразных областях науки. В геологии оно используется особенно часто. Ни одна научная работа в геологии не обходится без построения либо изучения компьютерной модели.
Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т.н. вычислительные эксперименты, в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий. Что и является основной причиной такой популярности компьютерного моделирования в геологии.
Как и развитие компьютерной техники, развитие моделирования не стоит на месте. Компьютерное моделирование развивается непосредственно вместе с компьютерными технологиями. Более мощные компьютеры позволяют строить наиболее точные модели, затрагивающие все большее количество переменных и просчитывающие результат на более длительные временные отрезки.
2.3 Компьютеризация в химии
В настоящее время методы компьютерной химии (квантово-химические методы, методы молекулярной динамики, Монте-Карло и т. д.) являются неотъемлемой составной частью теории растворов. Широкое применение компьютерных методов для исследований многокомпонентных конденсированных систем связано с возможностью расчета как любых экспериментальных измеряемых величин, так и величин, экспериментально не определяемых, но используемых для теоретического описания (например, потенциалы средних сил, различные автокорреляционные функции и т. д.). Стремительный прогресс в области вычислительной техники обусловил успешное применение численных методов в биологической и супрамолекулярной химии (исследование сольвофобных эффектов в растворах белков, определение механизма транспорта ионов через биомембраны, изучение структуры растворителей на поверхности раздела фаз и макромолекул). Крайне важным, ввиду бурного развития сверхкритических технологий, является использование ab initio расчетов и методов компьютерного моделирования для изучения растворов в экстремальных условиях.
Уровень современного специалиста в области физической, органической, координационной химии предполагает, с одной стороны, знание основных расчетных схем квантовой химии, с другой – умение применять методы компьютерного моделирования (методы молекулярной динамики и Монте-Карло). Это позволяет критически оценить уровень теоретических работ в конкретной, интересующей исследователя области.
3 Компьютеризация науки и ее социальные последствия
Очевидно, что использование мощной компьютерной техники и ее идей открывает новые возможности в учении, мышлении, в эмоциональном и когнитивном развитии. Однако следует иметь в виду и определенные издержки компьютеризации общества. Исследователи выявили ряд неоднозначных проблем формирования «компьютерного сознания» и познания, одна из которых — «потребительское» отношение к компьютеру и появление в связи с этим некоторых отрицательных черт мышления. В частности, это снижение способности к критике, игнорирование чувственного аспекта познания и творческого начала как иррациональных моментов, не поддающихся формализации, утрата исторического подхода к явлениям (в силу синхронизации информации о них в банке данных), обеднение используемого языка, его оттенков и метафоричности, замена формализованными языками. Многие задачи познания переосмыслены теперь как задачи вычисления, подключения к банкам данных, что придало мышлению объемность и масштабность, резко увеличило познавательный потенциал.
Одна из важных закономерностей развития науки - усиление и нарастание сложности и абстрактности научного знания, углубление и расширение процессов математизации и компьютеризации науки как базы новых информационных технологий, обеспечивающих совершенствование форм взаимодействия в научном сообществе.
Компьютеризация - процесс
проникновения современной
В конце XX вв. научно – техническая революция вступила в стадию "компьютерной революции". Компьютеризация - один из существенных процессов, обеспечивающих динамику социокультурного развития цивилизации во всех формах ее проявления.
ЭВМ выводит развитие науки на принципиально новый уровень:
• компьютерное моделирование позволяет совершенствовать методы теоретического воспроизведения действительности в рамках конкретной науки;
• активно развивается комплекс новых теоретических дисциплин (теория алгоритмов, исследование операций, теория игр и др.), имеющих имманентно (внутренне) интегративную направленность;
• создаются технические условия для интегрирования знания во всех его областях, что является предпосылкой для "прорыва" на следующий (более высокий) уровень познания;
• становится реальным создание "искусственного интеллекта" - технических систем, способных на основе введенной человеком информации принимать самостоятельные решения, расширяя и углубляя информационный процесс. ИИ симбиоз "человек - машина", принципиально изменяющий познавательные и деятельностные возможности человека.
Создаются условия для рационализации деятельности во всех ее формах и проявлениях. Компьютерный этап НТР позволяет реально выйти на уровень материалоэнерго и ресурсоемких производств, относительно замкнутых производственно-хозяйственных систем. Масштабы и объемы деятельности во всех ее формах уменьшаются, а эффективность возрастает.
Изменяется и традиционная
структура образовательной
Глобальная сеть ИНТЕРНЕТ
придает научно-
Исследование Массачусетский университет, задача: найти пути формирования нового типа мышления — мышления XXI века, привлекая для этого возможности компьютера. Одна из фундаментальных проблем обучения состояла в том, как соотнести абстрактное идеализированное представление, например, о движении с реальными, житейскими представлениями учащихся, с их коренной, исходной интуицией. Принималось во внимание, что Аристотелевы представления о движении хорошо согласуются с большинством ситуаций из нашего обыденного опыта, тогда как механические или ньютоновы представления о движении сложны и явно противоречат множеству наших интуитивных представлений относительно того, каким является мир. Учащиеся практически никогда не имеют дела с движением, о котором рассуждал Ньютон, т. е. с движением без сопротивления, вечным, «пока не остановят».
При отсутствии непосредственного восприятия ньютонова движения школа вынуждена представлять учащимся это движение в форме опосредствованного математизированного описания, через преобразование уравнений, но не через манипулирование с объектами. Отсюда задачи, которые поставила перед собой эта исследовательская группа: помочь интуитивному овладению механическим движением до усвоения уравнений и формальных предпосылок; задать в юном возрасте интуитивный контекст дальнейшего использования уравнений; найти способы, которые облегчили бы личностное овладение не только механическим движением и его законами, но и общими понятиями об этих законах. Все это предполагало принципиальное изменение исходной, коренной интуиции.
Именно с помощью
компьютера оказывается
Для развития этой способности группа Пейперта нашла нетрадиционный прием: с помощью компьютера и серии игр в реальном мире с реальными вещами создавались так называемые микромиры, каждый из которых должен был иллюстрировать один из миров, устроенных либо по представлениям Аристотеля, либо по законам Ньютона, идеям Эйнштейна и даже по «обобщенному закону движения в мире». В рамках последнего могли действовать бесконечно разнообразные законы движения, которые учащиеся придумают сами. Основой для этого становились личный опыт, хорошо известная «геометрия собственного тела» и другие знания и представления, которые вовлекались в творческую разработку разнообразных «законов» движения.
Критериями построения
таких «микромиров»
Очевидно, что построение
и использование «микромиров»
предполагает нетрадиционное
Как показало исследование группы Пейперта, компьютер в этом случае может оказать двоякую помощь. Во-первых, интуитивные представления о реальности могут быть воплощены в компьютерной программе, и тогда они становятся более доступными для оценки и рефлексии. Во-вторых, идеи программирования могут использоваться для перемоделирования интуитивных представлений. Следовательно, компьютер в данном случае используется для выявления связи научного знания с личностным, для приближения научного знания к знанию человека, а не к знанию факта или к владению навыком. «Переворот в сознании», о котором говорит Пейперт, состоит, таким образом, не просто в обращении к компьютеру, но в том, что открывается новый способ подхода к мышлению по типу компьютерного программирования. Ассимиляция культурой существования компьютеров понимается при этом как «знание программирования» или знание различных способов использования компьютера и того, когда и каким образом это следует делать.