Ультразвук

Автор: Пользователь скрыл имя, 04 Апреля 2012 в 23:08, реферат

Краткое описание

Ультразвук представляет собой волнообразно распространяющееся колебательное движение частиц среды. Ультразвук имеет некоторые особенности по сравнению со звуками слышимого диапазона. В ультразвуковом диапазоне сравнительно легко получить направленное излучение; он хорошо поддается фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний. При распространении в газах, жидкостях и твердых телах ультразвук порождает интересные явления, многие из которых нашли практическое применение в различных областях науки и техники.

Оглавление

Введение.
Ультразвук.
Ультразвук как упругие волны.
Специфические особенности ультразвука
Источники и приемники ультразвука.
Механические излучатели.
Электроакустические преобразователи.
Приемники ультразвука.
Применение ультразвука.
Ультразвуковая очистка.
Механическая обработка сверхтвердых и хрупких материалов.
Ускорение производственных процессов с помощью ультразвука.
Применение ультразвука в строительстве.
Применение ультразвука при производстве красок и покрытий
Испытания бетона ультразвуком
Ультразвуковая сварка.
Список использованной литературы:

Файлы: 1 файл

referat.doc

— 166.50 Кб (Скачать)

Принцип действия УЗ генератора-свистка почти такой же, как и обычного милицейского свистка, но размеры его значительно больше. Поток воздуха с большой скоростью разбивается об острый край внутренней полости генератора, вызывая колебания с частотой, равной собственной частоте резонатора. При помощи такого генератора можно создавать колебания с частотой до 100 Кгц при относительно небольшой мощности. Для получения больших мощностей применяют газоструйные генераторы, у которых скорость истечения газа выше. Жидкостные генераторы применяют для излучения УЗ в жидкость. В жидкостных генераторах (рис. 2) в качестве резонансной системы служит двустороннее острие, в котором возбуждаются изгибные колебания.



Струя жидкости, выходя из сопла с большой скоростью, разбивается об острый край пластинки, по обе стороны которой  возникают завихрения, вызывающие изменения давления с большой частотой.

              Для работы жидкостного (гидродинамического) генератора необходимо избыточное давление жидкости 5 кГ/см2. частота колебаний такого генератора определяется соотношением:

,

где v – скорость жидкости, вытекающей из сопла;  d – расстояние между острием и соплом.

              Гидродинамические излучатели в жидкости дают относительно дешевую УЗ-вую энергию на частотах до 3040 кГц при интенсивности в непосредственной близости от излучателя до нескольких Вт/см2.

              Механические излучатели используются в низкочастотном диапазоне УЗ и в диапазоне звуковых волн. Они относительно просты по конструкции и в эксплуатации, их изготовление не дорого, но они не могут создавать монохроматическое излучение[2] и тем более излучать сигналы строго заданной формы. Такие излучатели отличаются нестабильностью частоты и амплитуды, однако при излучении в газовых средах они имеют относительно высокую эффективность и мощность излучения: их кпд составляет от  нескольких % до 50%, мощность от нескольких ватт до десятков кВт.

 

Электроакустические преобразователи.

              Излучатели второго типа основываются на различных физических эффектах электромеханического преобразования. Как правило, они линейны, то есть воспроизводят по форме возбуждающий электрический сигнал. В низкочастотном УЗ-вом диапазоне применяются электродинамические излучатели и излучающие магнитострикционные преобразователи и пьезоэлектрические преобразователи. Наиболее широкое распространение получили излучатели магнитострикционного и пьезоэлектрического типов.

              В 1847 г. Джоуль заметил, что ферромагнитные материалы, помещенные в магнитное поле, изменяют свои размеры. Это явление назвали магнитострикционным эффектом[3]. Если по обмотке, наложенной на ферромагнитный стержень, пропустить переменный ток, то под воздействием изменяющегося магнитного поля стержень будет деформироваться. Никелевые сердечники, в отличии от железных, в магнитном поле укорачиваются. При пропускании переменного тока по обмотке излучателя его стержень деформируется в одном направлении при любом направлении магнитного поля. Поэтому частота механических колебаний будет вдвое больше частоты переменного тока.

              Чтобы частота колебаний излучателя соответствовала частоте возбуждающего тока, в обмотку излучателя подводят постоянное напряжение поляризации. У поляризованного излучателя увеличивается амплитуда переменной магнитной индукции, что приводит к увеличению деформации сердечника и повышению мощности.

              Магнитострикционный эффект используется при изготовлении УЗ-вых магнитострикционных преобразователей (рис. 3).

 


Эти преобразователи отличаются большими относительными деформациями, повышенной механической прочностью, малой чувствительностью к температурным воздействиям. Магнитострикционные преобразователи имеют небольшие значения электрического сопротивления, в результате чего для получения большой мощности не требуются высокие напряжения.

              Чаще всего применяют преобразователи из никеля (высокая стойкость против коррозии, низкая цена). Магнитострикционные сердечники могут быть изготовлены и из ферритов. У ферритов высокое удельное сопротивление, в результате чего потери  на вихревые токи в них ничтожно малы. Однако феррит – хрупкий материал, что вызывает опасность их перегрузки при большой мощности. Кпд магнитострикционных преобразователей при излучении в жидкость и твердое тело составляет 5090%., интенсивность излучения достигает нескольких десятков Вт/см2.

              В 1880 году братья Жак и Пьер Кюри открыли пьезоэлектрический эффект – если деформировать пластинку кварца, то на ее гранях появляются противоположные по знаку электрические заряды. Наблюдается и обратное явление – если к электродам кварцевой пластинки подвести электрический заряд, то ее размеры уменьшатся или увеличатся в зависимости от полярности подводимого заряда. При изменении знаков приложенного напряжения кварцевая пластинка будет то сжиматься, то разжиматься, то есть она будет колебаться в такт с изменениями знаков приложенного напряжения. Изменение толщины пластинки пропорционально приложенному напряжению.

              Принцип пьезоэлектрического эффекта используется при изготовлении излучателей УЗ-вых колебаний, которые преобразуют электрические колебания в механические. В качестве пьезоэлектрических материалов применяют кварц, титанат бария, фосфат аммония.

              Кпд пьезоэлектрических преобразователей достигает 90%, интенсивность излучения – несколько десятков Вт/см2. Для увеличения интенсивности и амплитуды колебаний  используют УЗ-вые концентраторы. В диапазоне средних УЗ-вых частот концентратор представляет собой фокусирующую систему, чаще всего в виде пьезоэлектрического преобразователя вогнутой формы, излучающего сходящуюся волну. В фокусе подобных концентраторов достигается интенсивность 105-106 Вт/см2.

 

Приемники ультразвука.

              В качестве приемников ультразвука на низких и средних частотах чаще всего применяют электроакустические преобразователи пьезоэлектрического типа. Такие приемники позволяют воспроизводить форму акустического сигнала, то есть временную зависимость звукового давления. В зависимости от условий применения приемники делают либо резонансными, либо широкополосными. Для получения усредненных по времени характеристик звукового поля используют термическими приемниками звука в виде покрытых звукопоглощающим веществом термопар или термисторов[4]. Интенсивность и звуковое давление можно оценивать и оптическими методами, например по дифракции света на УЗ.

 

 

 

 

 

 

 

 

 

 

Применение ультразвука.

              Многообразные применения УЗ, при которых используются различные его особенности, можно условно разбить на три направления. Первое связано с получением информации посредством УЗ-вых волн, второе – с активным воздействием на вещество и третье – с обработкой и передачей сигналов. При каждом конкретном применении используется УЗ определенного частотного диапазона (табл. 1). Расскажем лишь о некоторых из многочисленных областей, где нашел применение УЗ.

 

Ультразвуковая очистка.

              Качество УЗ очистки несравнимо с другими способами. Например, при полоскании деталей на их поверхности остается до 80% загрязнений, при вибрационной очистке – около 55%, при ручной – около 20%, а при ультразвуковой – не более 0,5%. Кроме того, детали, имеющие сложную форму, труднодоступные места, хорошо можно очистить только с помощью ультразвука. Особое преимущество УЗ-вой очистки заключается в ее высокой производительности при малой затрате физического труда, возможности замены огнеопасных или дорогостоящих органических растворителей безопасными и дешевыми водными растворами щелочей, жидким фреоном и др.

              Ультразвуковая очистка – сложный процесс, сочетающий местную кавитацию с действием больших ускорений в очищающей жидкости, что приводит к разрушению загрязнений. Если загрязненную деталь поместить в

жидкость и облучить ультразвуком, то под действием ударной волны кавитационных пузырьков поверхность детали очищается от грязи.

              Серьезной проблемой является борьба с загрязнением воздуха пылью, дымом, копотью, окислами металлов и т.д.  Ультразвуковой метод очистки газа и воздуха может применяться в существующих газоотводах независимо от температуры и влажности среды. Если поместить УЗ-вой излучатель в пылеосадочную камеру, то эффективность ее действия возрастает в сотни раз. В чем сущность УЗ-вой очистки воздуха? Пылинки, которые беспорядочно движутся в воздухе, под действием ультразвуковых колебаний чаще и сильнее ударяются друг о друга. При этом они сливаются и размер их увеличивается. Процесс укрупнения частиц называется коагуляцией. Улавливаются укрупненные и утяжеленные частицы специальными фильтрами.

 

Механическая обработка сверхтвердых и хрупких материалов.

              Если между рабочей поверхностью УЗ-вого инструмента и обрабатываемой деталью ввести абразивный материал, то при работе излучателя частицы абразива будут воздействовать на поверхность детали. Материал разрушается и удаляется при обработке под действием большого числа направленных микроударов (рис. 4).

 

 

 

              Кинематика ультразвуковой обработки складывается из главного движения – резания, т.е. продольных колебаний инструмента, и вспомогательного движения – движения подачи. Продольные колебания являются источником энергии абразивных зерен, которые и производят разрушение обрабатываемого материала. Вспомогательное движение – движение подачи – может быть продольным, поперечным и круговым. Ультразвуковая обработка обеспечивает большую точность – от 50 до 1 мк в зависимости от зернистости абразива. Применяя инструменты различной формы можно выполнять не только отверстия, но и сложные вырезы. Кроме того, можно вырезать криволинейные оси, изготавливать матрицы, шлифовать, гравировать и даже сверлить алмаз. Материалы, используемые  в качестве абразива – алмаз, корунд, кремень, кварцевый песок.

 

Ускорение производственных процессов с помощью ультразвука.

 

                       Применение ультразвука позволяет значительно ускорить смешивание различных жидкостей и получить устойчивые эмульсии (даже таких как вода и ртуть).

                       Воздействуя УЗ-выми колебаниями большой интенсивности на жидкости, можно получать тонкодисперсные аэрозоли высокой плотности.

                       Сравнительно недавно начали применять УЗ для пропитки электротехнических намоточных изделий. Применение УЗ позволяет сократить время пропитки в 35 раз и заменить 2-3 кратную пропитку одноразовой.

                       Под действием УЗ значительно ускоряется процесс гальванического осаждения металлов и сплавов.

                       Если в расплавленный металл вводить УЗ-вые колебания, заметно измельчается зерно, уменьшается пористость.

                       Ультразвук применяется при обработке металлов и сплавов в твердом состоянии, что приводит к «разрыхлению» структуры и к искусственному их старению.

                       УЗ при прессовании металлических порошков обеспечивает получение прессованных изделий более высокой плотности и стабильности размеров.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Применение ультразвука в строительстве.

 

Применение ультразвука при производстве красок и покрытий

 

В изготовлении покрытий и красок используются различные компоненты, такие, как красители, наполнители, химические добавки, отвердители и реологические модификаторы. Ультразвук является эффективным средством диспергирования и эмульсирования, разрушения агломератов и измельчения таких компонентов в покрытиях.

Ультразвук используется в изготовлении покрытий для:
 

                        эмульсирования полимеров в водных системах;

                        диспергирования и измельчения красителей;

                        измельчения наноматериалов в высокопрочных покрытиях.

Покрытия делятся на 2 больших категории: полимерные покрытия на водной основе и на основе растворителей. Каждому тип предназначен для решения своих задач. Директивы по сокращению выбросов ЛОС и высокие цены на растворители стимулируют рост технологий изготовления полимерных покрытий на водной основе. Применение ультразвуковой обработки может увеличить производительность таких экологически безвредных систем.

При производстве покрытий, применяемых в строительстве, промышленном производстве, автомобильной промышленности и покрытий для дерева, ультразвук позволяет улучшить такие их характеристики, как стойкость окраски, устойчивость к царапинам, трещинам и действию ультрафиолетового излучения или электропроводность. Некоторые из этих характеристик достигаются включением в состав покрытий наноразмерных материалов, напр., оксидов металлов (TiO2, диоксид кремния, окись церия, ZnO, ...).

Ультразвук обладает антивспенивающим действием (захваченные пузырьки воздуха) и способствует дегазированию (растворенный газ) высоковязких продуктов.
Так как ультразвуковая технология диспергирования может быть использована на уровне лаборатории, построения модели и производства, позволяя обрабатывать свыше 10 т/ч, она применяется как в исследованиях и разработках, так и в промышленном производстве. Результаты процессов могут легко быть воспроизведены на более высоком уровне. 

Традиционно при изготовлении покрытий используются основные полимерные химические составы. Переход к технологии изготовления покрытий на водной основе влияет на выбор сырья, свойства продукта и методы производства. При обычной эмульсионной полимеризации, напр., покрытий на водной основе, частицы выстраиваются от центра к поверхности. Кинетический фактор влияет на однородность и морфологию частиц. Для создания полимерных эмульсий ультразвуковая обработка может производиться двумя способами:

Информация о работе Ультразвук