Автор: Пользователь скрыл имя, 04 Апреля 2012 в 23:08, реферат
Ультразвук представляет собой волнообразно распространяющееся колебательное движение частиц среды. Ультразвук имеет некоторые особенности по сравнению со звуками слышимого диапазона. В ультразвуковом диапазоне сравнительно легко получить направленное излучение; он хорошо поддается фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний. При распространении в газах, жидкостях и твердых телах ультразвук порождает интересные явления, многие из которых нашли практическое применение в различных областях науки и техники.
Введение.
Ультразвук.
Ультразвук как упругие волны.
Специфические особенности ультразвука
Источники и приемники ультразвука.
Механические излучатели.
Электроакустические преобразователи.
Приемники ультразвука.
Применение ультразвука.
Ультразвуковая очистка.
Механическая обработка сверхтвердых и хрупких материалов.
Ускорение производственных процессов с помощью ультразвука.
Применение ультразвука в строительстве.
Применение ультразвука при производстве красок и покрытий
Испытания бетона ультразвуком
Ультразвуковая сварка.
Список использованной литературы:
Принцип действия УЗ генератора-свистка почти такой же, как и обычного милицейского свистка, но размеры его значительно больше. Поток воздуха с большой скоростью разбивается об острый край внутренней полости генератора, вызывая колебания с частотой, равной собственной частоте резонатора. При помощи такого генератора можно создавать колебания с частотой до 100 Кгц при относительно небольшой мощности. Для получения больших мощностей применяют газоструйные генераторы, у которых скорость истечения газа выше. Жидкостные генераторы применяют для излучения УЗ в жидкость. В жидкостных генераторах (рис. 2) в качестве резонансной системы служит двустороннее острие, в котором возбуждаются изгибные колебания.
Струя жидкости, выходя из сопла с большой скоростью, разбивается об острый край пластинки, по обе стороны которой возникают завихрения, вызывающие изменения давления с большой частотой.
Для работы жидкостного (гидродинамического) генератора необходимо избыточное давление жидкости 5 кГ/см2. частота колебаний такого генератора определяется соотношением:
,
где v – скорость жидкости, вытекающей из сопла; d – расстояние между острием и соплом.
Гидродинамические излучатели в жидкости дают относительно дешевую УЗ-вую энергию на частотах до 3040 кГц при интенсивности в непосредственной близости от излучателя до нескольких Вт/см2.
Механические излучатели используются в низкочастотном диапазоне УЗ и в диапазоне звуковых волн. Они относительно просты по конструкции и в эксплуатации, их изготовление не дорого, но они не могут создавать монохроматическое излучение[2] и тем более излучать сигналы строго заданной формы. Такие излучатели отличаются нестабильностью частоты и амплитуды, однако при излучении в газовых средах они имеют относительно высокую эффективность и мощность излучения: их кпд составляет от нескольких % до 50%, мощность от нескольких ватт до десятков кВт.
Излучатели второго типа основываются на различных физических эффектах электромеханического преобразования. Как правило, они линейны, то есть воспроизводят по форме возбуждающий электрический сигнал. В низкочастотном УЗ-вом диапазоне применяются электродинамические излучатели и излучающие магнитострикционные преобразователи и пьезоэлектрические преобразователи. Наиболее широкое распространение получили излучатели магнитострикционного и пьезоэлектрического типов.
В 1847 г. Джоуль заметил, что ферромагнитные материалы, помещенные в магнитное поле, изменяют свои размеры. Это явление назвали магнитострикционным эффектом[3]. Если по обмотке, наложенной на ферромагнитный стержень, пропустить переменный ток, то под воздействием изменяющегося магнитного поля стержень будет деформироваться. Никелевые сердечники, в отличии от железных, в магнитном поле укорачиваются. При пропускании переменного тока по обмотке излучателя его стержень деформируется в одном направлении при любом направлении магнитного поля. Поэтому частота механических колебаний будет вдвое больше частоты переменного тока.
Чтобы частота колебаний излучателя соответствовала частоте возбуждающего тока, в обмотку излучателя подводят постоянное напряжение поляризации. У поляризованного излучателя увеличивается амплитуда переменной магнитной индукции, что приводит к увеличению деформации сердечника и повышению мощности.
Магнитострикционный эффект используется при изготовлении УЗ-вых магнитострикционных преобразователей (рис. 3).
Эти преобразователи отличаются большими относительными деформациями, повышенной механической прочностью, малой чувствительностью к температурным воздействиям. Магнитострикционные преобразователи имеют небольшие значения электрического сопротивления, в результате чего для получения большой мощности не требуются высокие напряжения.
Чаще всего применяют преобразователи из никеля (высокая стойкость против коррозии, низкая цена). Магнитострикционные сердечники могут быть изготовлены и из ферритов. У ферритов высокое удельное сопротивление, в результате чего потери на вихревые токи в них ничтожно малы. Однако феррит – хрупкий материал, что вызывает опасность их перегрузки при большой мощности. Кпд магнитострикционных преобразователей при излучении в жидкость и твердое тело составляет 5090%., интенсивность излучения достигает нескольких десятков Вт/см2.
В 1880 году братья Жак и Пьер Кюри открыли пьезоэлектрический эффект – если деформировать пластинку кварца, то на ее гранях появляются противоположные по знаку электрические заряды. Наблюдается и обратное явление – если к электродам кварцевой пластинки подвести электрический заряд, то ее размеры уменьшатся или увеличатся в зависимости от полярности подводимого заряда. При изменении знаков приложенного напряжения кварцевая пластинка будет то сжиматься, то разжиматься, то есть она будет колебаться в такт с изменениями знаков приложенного напряжения. Изменение толщины пластинки пропорционально приложенному напряжению.
Принцип пьезоэлектрического эффекта используется при изготовлении излучателей УЗ-вых колебаний, которые преобразуют электрические колебания в механические. В качестве пьезоэлектрических материалов применяют кварц, титанат бария, фосфат аммония.
Кпд пьезоэлектрических преобразователей достигает 90%, интенсивность излучения – несколько десятков Вт/см2. Для увеличения интенсивности и амплитуды колебаний используют УЗ-вые концентраторы. В диапазоне средних УЗ-вых частот концентратор представляет собой фокусирующую систему, чаще всего в виде пьезоэлектрического преобразователя вогнутой формы, излучающего сходящуюся волну. В фокусе подобных концентраторов достигается интенсивность 105-106 Вт/см2.
В качестве приемников ультразвука на низких и средних частотах чаще всего применяют электроакустические преобразователи пьезоэлектрического типа. Такие приемники позволяют воспроизводить форму акустического сигнала, то есть временную зависимость звукового давления. В зависимости от условий применения приемники делают либо резонансными, либо широкополосными. Для получения усредненных по времени характеристик звукового поля используют термическими приемниками звука в виде покрытых звукопоглощающим веществом термопар или термисторов[4]. Интенсивность и звуковое давление можно оценивать и оптическими методами, например по дифракции света на УЗ.
Многообразные применения УЗ, при которых используются различные его особенности, можно условно разбить на три направления. Первое связано с получением информации посредством УЗ-вых волн, второе – с активным воздействием на вещество и третье – с обработкой и передачей сигналов. При каждом конкретном применении используется УЗ определенного частотного диапазона (табл. 1). Расскажем лишь о некоторых из многочисленных областей, где нашел применение УЗ.
Качество УЗ очистки несравнимо с другими способами. Например, при полоскании деталей на их поверхности остается до 80% загрязнений, при вибрационной очистке – около 55%, при ручной – около 20%, а при ультразвуковой – не более 0,5%. Кроме того, детали, имеющие сложную форму, труднодоступные места, хорошо можно очистить только с помощью ультразвука. Особое преимущество УЗ-вой очистки заключается в ее высокой производительности при малой затрате физического труда, возможности замены огнеопасных или дорогостоящих органических растворителей безопасными и дешевыми водными растворами щелочей, жидким фреоном и др.
Ультразвуковая очистка – сложный процесс, сочетающий местную кавитацию с действием больших ускорений в очищающей жидкости, что приводит к разрушению загрязнений. Если загрязненную деталь поместить в
жидкость и облучить ультразвуком, то под действием ударной волны кавитационных пузырьков поверхность детали очищается от грязи.
Серьезной проблемой является борьба с загрязнением воздуха пылью, дымом, копотью, окислами металлов и т.д. Ультразвуковой метод очистки газа и воздуха может применяться в существующих газоотводах независимо от температуры и влажности среды. Если поместить УЗ-вой излучатель в пылеосадочную камеру, то эффективность ее действия возрастает в сотни раз. В чем сущность УЗ-вой очистки воздуха? Пылинки, которые беспорядочно движутся в воздухе, под действием ультразвуковых колебаний чаще и сильнее ударяются друг о друга. При этом они сливаются и размер их увеличивается. Процесс укрупнения частиц называется коагуляцией. Улавливаются укрупненные и утяжеленные частицы специальными фильтрами.
Если между рабочей поверхностью УЗ-вого инструмента и обрабатываемой деталью ввести абразивный материал, то при работе излучателя частицы абразива будут воздействовать на поверхность детали. Материал разрушается и удаляется при обработке под действием большого числа направленных микроударов (рис. 4).
Кинематика ультразвуковой обработки складывается из главного движения – резания, т.е. продольных колебаний инструмента, и вспомогательного движения – движения подачи. Продольные колебания являются источником энергии абразивных зерен, которые и производят разрушение обрабатываемого материала. Вспомогательное движение – движение подачи – может быть продольным, поперечным и круговым. Ультразвуковая обработка обеспечивает большую точность – от 50 до 1 мк в зависимости от зернистости абразива. Применяя инструменты различной формы можно выполнять не только отверстия, но и сложные вырезы. Кроме того, можно вырезать криволинейные оси, изготавливать матрицы, шлифовать, гравировать и даже сверлить алмаз. Материалы, используемые в качестве абразива – алмаз, корунд, кремень, кварцевый песок.
Применение ультразвука позволяет значительно ускорить смешивание различных жидкостей и получить устойчивые эмульсии (даже таких как вода и ртуть).
Воздействуя УЗ-выми колебаниями большой интенсивности на жидкости, можно получать тонкодисперсные аэрозоли высокой плотности.
Сравнительно недавно начали применять УЗ для пропитки электротехнических намоточных изделий. Применение УЗ позволяет сократить время пропитки в 35 раз и заменить 2-3 кратную пропитку одноразовой.
Под действием УЗ значительно ускоряется процесс гальванического осаждения металлов и сплавов.
Если в расплавленный металл вводить УЗ-вые колебания, заметно измельчается зерно, уменьшается пористость.
Ультразвук применяется при обработке металлов и сплавов в твердом состоянии, что приводит к «разрыхлению» структуры и к искусственному их старению.
УЗ при прессовании металлических порошков обеспечивает получение прессованных изделий более высокой плотности и стабильности размеров.
В изготовлении покрытий и красок используются различные компоненты, такие, как красители, наполнители, химические добавки, отвердители и реологические модификаторы. Ультразвук является эффективным средством диспергирования и эмульсирования, разрушения агломератов и измельчения таких компонентов в покрытиях.
Ультразвук используется в изготовлении покрытий для:
эмульсирования полимеров в водных системах;
диспергирования и измельчения красителей;
измельчения наноматериалов в высокопрочных покрытиях.
Покрытия делятся на 2 больших категории: полимерные покрытия на водной основе и на основе растворителей. Каждому тип предназначен для решения своих задач. Директивы по сокращению выбросов ЛОС и высокие цены на растворители стимулируют рост технологий изготовления полимерных покрытий на водной основе. Применение ультразвуковой обработки может увеличить производительность таких экологически безвредных систем.
При производстве покрытий, применяемых в строительстве, промышленном производстве, автомобильной промышленности и покрытий для дерева, ультразвук позволяет улучшить такие их характеристики, как стойкость окраски, устойчивость к царапинам, трещинам и действию ультрафиолетового излучения или электропроводность. Некоторые из этих характеристик достигаются включением в состав покрытий наноразмерных материалов, напр., оксидов металлов (TiO2, диоксид кремния, окись церия, ZnO, ...).
Ультразвук обладает антивспенивающим действием (захваченные пузырьки воздуха) и способствует дегазированию (растворенный газ) высоковязких продуктов.
Так как ультразвуковая технология диспергирования может быть использована на уровне лаборатории, построения модели и производства, позволяя обрабатывать свыше 10 т/ч, она применяется как в исследованиях и разработках, так и в промышленном производстве. Результаты процессов могут легко быть воспроизведены на более высоком уровне.
Традиционно при изготовлении покрытий используются основные полимерные химические составы. Переход к технологии изготовления покрытий на водной основе влияет на выбор сырья, свойства продукта и методы производства. При обычной эмульсионной полимеризации, напр., покрытий на водной основе, частицы выстраиваются от центра к поверхности. Кинетический фактор влияет на однородность и морфологию частиц. Для создания полимерных эмульсий ультразвуковая обработка может производиться двумя способами: