Утилизация отходов электростанций

Автор: Пользователь скрыл имя, 18 Апреля 2011 в 22:51, реферат

Краткое описание

Существует образное выражение, что мы живем в эпоху трех «Э»: экономика, энергетика, экология. Не зря говорят: «Энергетика – хлеб промышленности». Чем более развиты промышленность и техника, тем больше энергии нужно для них. Существует даже понятие – «опережающее развитие энергетики». Это значит, что ни одно промышленное предприятие, ни один новый город или просто дом нельзя построить до того, как будет определён или создан заново источник энергии, которую они станут потреблять.

Оглавление

ВВЕДЕНИЕ…………………………………………………………………3

УТИЛИЗАЦИЯ Отходов ядерной энергетики…………………4
Комплекс переработки ЖРО……………………………………….7
Золошлаковые отходы: опыт и перспективы использования……………………………………………………….10
ТЕХНОЛОГИЯ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ЗОЛОШЛАКОВЫХ ОТХОДОВ ТЭС……………………………………14
ТЕХНОГЕННЫЕ ОТХОДЫ ПРЕДПРИЯТИЙ ЭНЕРГЕТИКИ И ПУТИ ИХ ВТОРИЧНОЙ ПЕРЕРАБОТКИ………………………………………16
Способы уменьшения выбросов ТЭС в Окружающую среду Уменьшение выбросов сернистых соединений в органическим топливе для ТЭС……………………………20

Файлы: 1 файл

тане реферат.doc

— 147.50 Кб (Скачать)

    Содержание  в атмосферных выбросах ТЭС диоксидов  серы и азота способствует возникновению кислотных дождей, т.к. во влажной атмосфере происходит цепь фотохимических реакций, в результате которых образуется серная и азотная кислоты. При сжигании углей образуются также выбросы продуктов недожога, особенно токсичными среди них являются полициклические ароматические углеводороды (ПАУ), среди которых можно выделить бенз(а)пирен – вещество первого класса вредности, с его действием связано увеличение онкологических заболеваний. Содержание ПАУ определяется типом сжигаемого топлива, а также количеством и режимом выбросов дымовых газов и метеорологическими условиями.

    Серьезную проблему вблизи ТЭС представляет складирование  золы и шлаков. Для этого требуются  значительные территории, которые долгое время не используются, а также являются очагами накопления тяжелых металлов и повышенной радиоактивности. Угольные золоотвалы также оказывают значительное влияние на природно-территориальные комплексы (ПТК). Их воздействие осуществляется через рассеивание золы ветром, фильтрацию вод сквозь стенки и дно золоотвалов, а  также  в  результате  предусмотренных  сбросов  осветленных  вод,  частичный  сброс  которых происходит при мокром золоудалении. Кроме влияния на ПТК, пылящие золоотвалы ухудшают гигиеническую обстановку на прилегающих территориях, уменьшают производственный ресурс машин, механизмов, а иногда – и сельскохозяйственных угодий.

    Таким образом, зола – продукт сжигания топлива, который выносится дымовыми газами из топки котла и улавливается золоуловителями. Шлак – материал, который скапливается по мере сгорания топлива в шлакосборниках. Зола в основном представлена фракцией 0,01 – 0,1мм при максимальном размере частиц не более 1–2мм. Шлак в основном представлен фракциями 0,1 – 20 мм при максимальном размере частиц 40 – 60 мм и минимальном 0,04 мм. Зола представляет собой мелкодисперсный минеральный порошок от светло-серого до темно-серого цвета, шлак имеет аналогичный цвет, но отличается от золы большей крупностью [2].

    Золошлаковые  отходы (ЗШО), образующиеся при сжигании угля в топках ТЭЦ и котельных, являются механической смесью золы и шлака. Усредненное состояние выхода золы и шлака составляет 4:1. По форме золошлаки представляют собой микроскопические сферические частицы оплавленных под воздействием высоких температур минералов, в основном кварца, и частицами неправильной формы (остальной материал).

    Зола  и шлаки представляют собой сложную  систему, свойства которой зависят  от вида топлива и режима его сжигания, конструкции котла и многих других факторов. Это определяет необходимость проведения комплексных исследований состава и свойств минеральной части различных углей, сжигаемых на электростанциях Казахстана, так как основной причиной недостаточного использования золошлаков в народном хозяйстве является неудовлетворительное состояние изученности золы и шлака как сырья.

    Золошлаковые  отходы включают золу уноса – порошкообразный  пылевидный материал, улавливаемый из дымовых газов ТЭС. В зависимости  от способа улавливания зола может  быть мокрой и сухой. В настоящее  время используется в основном мокрый способ удаления золы и шлака – гидрозолоудаление (ГЗУ) [3].

    Использование залошлаковых отходов (ЗШО) ТЭС на 80% приближает технологию ТЭС к безотходной.

    При сжигании углей Экибастузского месторождения  образуется около 40-50% золы кремния. Из этой золы можно получить глинозем, а из отходов производства глинозема - цемент. Бетон на основе этого цемента обладает высоким показателями, он набирает марочную прочность всего за одни сутки. Отходы этого производства могут быть использованы для закладки угольных выработок с возможностью последующей рециркуляции. Один этот пример использования золошлаков от сжигания углей экибастузского месторождения показывает, что они не являются сырьем для одной отрасли. Их нужно использовать в сочетании нескольких отраслей, в т.ч. металлургии, химической отрасли и т.д.

    Поэтому основная задача в развитии электро- и теплоэнергетики Казахстана, как  и во всем мире, заключается в  обеспечении в процессе выработки  электрической и тепловой энергии  высокой экономичности, надежности, полной экологической безопасности, т.е. минимальных затрат топливно-энергетических ресурсов, при оптимальных энергосберегающих технологиях.

 

Способы уменьшения выбросов ТЭС в ОС.

Уменьшение  выбросов сернистых  соединений в органическим топливе для ТЭС.

       Уменьшение  выбросов сернистых соединений в  атмосферу может идти по трем направлениям:

       1) очистка нефтяного топлива от  серы на нефтеперерабатывающих  заводах;

       2) переработка топлива на ТЭС  до его сжигания с целью  получения малосернистого газа;

       3) очистка дымовых газов от окислов серы.

       Сера  содержится в нефти в основном в виде сложных соединений. Эти  соединения химически малоактивны и обладают высокой термостабильностью, в связи, с чем их трудно разрушить воздействием кислот или щелочей. Поэтому для выделения серы из топлива до сжигания его либо подвергают воздействию высоких температур, либо этот процесс сочетается с воздействием химических веществ.

       При переработке нефти на нефтеперерабатывающих  заводах в легкие фракции переходит небольшое количество серы, а подавляющая часть сернистых соединений (70 – 90 %) концентрируется в высококипящих фракциях и остаточных продуктах, входящих в состав мазута.

       Удаление  серы из нефтяных топлив можно осуществить  гидроочисткой. При этом происходит взаимодействие водорода с сераорганическими соединениями и образуется сероводород H2S, который затем улавливается и может использоваться для получения серы и ее соединений. Процесс протекает при температуре 300 – 450 °С и давлении до 10 МПа в присутствии катализаторов (окислов молибдена, кобальта и никеля).

       Удаление  серы из твердого топлива. Сера в твердом топливе содержится в трех формах: в виде включений колчедана FeS2 ,серы, входящей в состав молекул органической массы топлива, и сульфатной (в сернокислых солях кальция и щелочных металлов).

       В результате простейшего обогащения угля можно удалить только колчеданную серу, FeS2, используя большую ее плотность (около 5 т/м3) по сравнению с остальной массой угля (около 2 т/м3). Отделение колчедана дает ощутимый эффект, если колчеданная сера составляет значительную величину от общей серы и вкрапления колчедана достаточно крупны. Так, для бурого подмосковного угля даже при сухом, методе обогащения из угля-дробленки удается удалить 25 – 30 % серы. Отсепарированный колчедан может быть использован для получения серной кислоты. Для отделения от угля колчеданной и органической серы может быть применено гидротермическое обессеривание углей, заключается в обработке измельченного топлива в автоклавах при давлении 1,75 МПа и температуре около 300 °С щелочными растворами, содержащими гидраты окисей натрия и калия. При этом получается уголь с весьма малым содержанием серы, который отделяется от жидкости центрифугированием и затем сушится. Жидкость, содержащая сульфиды натрия и калия, регенерируется в результате обработки углекислотой, а из получающегося при этом сероводорода извлекается элементарная сера.

       Связывание  серы в кипящем  слое. Топливо может сжигаться в кипящем слое частиц размолотого известняка, в которые погружены для интенсивного охлаждения поверхности нагрева котла. Подобный способ сжигания может использоваться для жидкого, твердого и газового топлив, содержащих серу. При температуре около 900 °С происходит диссоциация СаСО3 на СО2 и СаО, а в реакцию с серой вступает СаО, образуя в конечном итоге CaS – сульфат кальция. Очистка топлива от серы при этом может составлять около 90 %.

       Часть кипящего слоя, поглотившего серу топлива, подается на регенерацию. При температуре 1000 - 1500 °С под беспровальную решетку подаются продукты сгорания, поддерживающие температуру в слое на уровне 1000 – 1100 °С. При этом протекает реакция:

3CaSO4+CaS=4SO2+4CaO.

       Газообразные  продукты содержат до 10 % сернистого ангидрида, который может быть использован для производства серной кислоты. Регенерированная окись кальция возвращается в топочное устройство котла.

       Удаление  серы из жидкого топлива. Снижение сернистости сжигаемого топлива можно осуществить, подвергая его воздействию высоких температур с использованием окислителей (газификация) или без них (пиролиз).

       Пиролиз нефтепродуктов. Один из методов получения бессернистого мазута - предварительный пиролиз нефтяного сырья.

       Метод непостоянно действующей технологии относится к пассивным мероприятиям. Разработкой его занимаются в нескольких странах. Предусматривается сжигание высокосернистого топлива на ТЭС при благоприятных метеорологических условиях. Продукты сгорания рассеиваются через высокие дымовые трубы, что обеспечивает допустимое содержание окислов серы в приземном слое атмосферы. При неблагоприятных метеоусловиях ТЭС оперативно переключается на сжигание малосернистого топлива из резервного запаса или снижает нагрузку. 

Снижение  выбросов окислов азота на ТЭС.

         Концентрация окислов азота в  дымовых газах определяется в  основном режимом и организацией топочного процесса при сжигании органических топлив, а также концентрацией кислорода в зоне горения и температурой процесса. Воздействуя на эти параметры, можно регулировать уровни окислов азота, образующихся в топках и камерах сгорания.

       Полученные  результаты исследований по снижению выбросов окислов азота посредством режимно-конструктивных мероприятий можно обобщить следующим образом:

       уменьшением коэффициента избытка воздуха, а  до 1,3 (а - коэффициент избытка воздуха) концентрация окислов азота может быть снижена на 25 – 30 % от уровня их содержания в 900 – 1500 мг/м3 при а=1,15 - 1,20;

       снижением температуры газов в зоне горения  посредством рециркуляции дымовых газов через горелки (15%) уровень в газах может быть 
уменьшен на 25 – 30 %;

       существенное  снижение может быть достигнуто при  двухступенчатом 
сжигании топлива (в первой ступени, а=0,81, во второй, а=1,025);

       Возможно  удаление окислов азота и из дымовых  газов, но оно не получило применения из-за трудностей, связанных с низкой концентрацией окислов азота в дымовых газах и их чрезмерно высокой химической устойчивости (особенно окиси азота).

       Считается возможной очистка дымовых газов  от окислов азота двумя способами:

       1)улавливанием  окислов с последующей переработкой  их в товарную продукцию (азотная кислота, концентраты окислов азота и азотнокислые соли);

       2) разрушением окислов азота до  нетоксичных составляющих.

       В первом способе используется процесс  поглощения и непоглащения, например, щелочное поглощение окислов азота (поглотители Ка2СО3, Са(ОН)2 или растворы аммиака).

       Наиболее  полно абсорбция происходит при  использовании смеси серной и  азотной кислоты.

       Из   абсорбционных   способов   считается   наиболее   перспективной   абсорбция силикагелем. В схеме с силикагелем побочными продуктами могут быть азотная кислота и концентраты окислов азота. Исследуется метод каталитического разложения окислов азота, применяемый для очистки газов в производстве азотной кислоты. 

Снижение  выбросов твердых  частиц на ТЭС.

       На  угольных ТЭС для улавливания  твердых частиц из дымовых газов применяются золоуловители различных типов. На некоторых мазутных ТЭС также применяются золоуловители, очищающие газы от недожога и сажи, особенно в период обдувки котлоагрегатов.

       Основные  типы золоуловителей: инерционные сухие  или мокрые; тканевые фильтры; электрофильтры; комбинированные устройства.

       Мокрые   золоуловители   осаждают   частицы   благодаря   орошению   водой.

       Тканевые  фильтры пока не нашли широкого применения на мощных ТЭС. С появлением высокопрочных синтетических и минеральных волокон тканевые фильтры начинают более широко применяться в некоторых странах. В США имеется около 30 установок рукавных фильтров на блоках мощностью до 460 МВт. Эти фильтры выполняются из стекловолокна, полиэфира, стекловолокна с графитом при температуре газов до 200 °С. Основной недостаток тканевых золоуловителей - большие габариты и малый срок службы.

Информация о работе Утилизация отходов электростанций