Контрольная работа по "Экологии"

Автор: Пользователь скрыл имя, 01 Марта 2013 в 12:51, реферат

Краткое описание

Как самостоятельная наука экология сформировалась в XX столетии, хотя факты, составляющие ее содержание, привлекали внимание человека с давних времен. В современном виде экология охватывает чрезвычайно широкий круг вопросов и тесно переплетается с целым рядом смежных наук: биологией, геологией, физикой, химией, генетикой и др. Экология - это наука об отношениях растительных и животных организмов или их сообществ между собой и с окружающей средой. Термин «экология», образованный из двух греческих слов: ойкос - дом, жилище, родина и логос - наука, был предложен немецким биологом Э. Геккелем в 1869 г. и обозначает буквально «изучение собственного дома», или «наука о местообитании».

Оглавление

1. Общие понятия об экологии и экологических факторах
2. Экологические факторы
3. Закономерности воздействия факторов среды на организмы
4. Общие закономерности действия экологических факторов
5. Экосистема
6. Экологическая ниша
7. Энергия в экосистемах. Жизнь как термодинамический процесс
8. Предмет исследования биоэнергетики. Первое начало термодинамики.
9. Второе начало термодинамики
10. Загрязнители окружающей природной среды (ОПС).
11. Понятие экологического кризиса и экологической катастрофы.

Файлы: 1 файл

экология.doc

— 356.00 Кб (Скачать)

Таким образом, любая  живая система, в том числе  и экосистема, поддерживает свою жизнедеятельность  благодаря, во-первых, наличию в окружающей среде в избытке даровой энергии; вовторых, способности за счет устройства составляющих ее компонентов эту энергию улавливать и концентрировать, а использовав - рассеивать в окру-жающую среду.

Даровая энергия окружающей среды - это энергия Солнца.

Доходящая до Земли энергия  Солнца распределяется следую-щим образом: 33 % ее отражается облаками и пылью  атмосферы (это так называемое альбедо  или коэффициент отражения Земли ); 67 % поглощается атмосферой, поверхностью Земли и океаном. Из этого количества поглощенной энергии лишь около одного процента расходуется на фотосинтез, а вся остальная энергия, нагрев атмосферу, сушу и океан, переизлучается в космическое пространство в форме невидимого теплового (инфра-красного) излучения. Этого одного процента энергии достаточно для обеспечения ей всего живого вещества плане-ты и поддержания им состояния с низкой энтропией. Как распределяется эта энергия между компонентами биотической структуры?

Улавливают энергию  Солнца и превращают ее в потенциальную энергию органического вещества растения - продуценты. Весь остальной живой мир получает необходимую для жизнедеятельности энер-гию, в основном поедая их.

Перенос энергии пищи от ее источника - продуцента через ряд организмов, происходящий путем поедания одних организмов другими, называется пищевой или трофической цепью.

Как происходит перенос  энергии по трофической цепи? Животное употребило в пищу растение или консумента более низкого порядка. Содержащееся в пище органическое вещество расщепляется в при-сутствии кислорода с выделением энергии. Этот процесс, обратный фотосинтезу, называется дыханием. Он имеет место в каждой клетке живого организма, поэтому его еще называют клеточным дыханием.

Около 90 % выделившейся энергии  расходуется организмом на поддержание своей жизнедеятельности, то есть на обеспечение всех необходимых ему функций, после чего она в виде выделяемого орга-низмом тепла рассеивается в окружающую среду и по сути дела без-возвратно теряется для всей живой системы. И только около 10 % энергии идет на построение тела, рост и размножение организма. Именно эти 10 % энергии и доступны следующему трофическому уровню. Таким образом, энергии с переходом от одного уровня к другому остается все меньше.

Но здесь нужно иметь  в виду, что чем выше трофический уровень, тем в более концентрированной форме содержится в живых организмах энергия. Это объясняется присущей только живому веществу спецификой - обладанием механизмами концентрирования энергии.

Таким образом, сначала  улавливание, а затем концентрирование энергии с переходом от одного трофического уровня к другому обеспечивает повышение упорядоченности, организации живой системы, то есть уменьшение ее энтропии. Для поддержания низкой энтропии в равной степени важно, чтобы у элементов системы были эффективные механизмы как для улавливания и концентрации энергии - извлечения негоэнтропии из окружающей среды, так и для рассеивания ее в окружающую среду - освобождение от накапливающейся положительной энтропии. В таком сочетании они есть только в живых системах. Поэтому жизнь как термодинамический процесс представляет собой непрерывный обмен живых систем с окружающей средой, при котором происходит освобождение от производимой положительной энтропии и извлечение отрицательной, то есть порядка и организации.

Необходимо понимать, что энтропия уменьшается в конкретной локальной зоне, при этом в окружающей среде она возрастает. Таким образом, рост упорядоченности в одной  части системы приводит к усилению неупорядоченности в других ее частях.

Для описания поведения  энергии в экосистемах употребляют  термин поток энергии, поскольку в отличии от циклического движения веществ превращения энергии идут в одном направлении. Энергия, однажды использованная каким-либо организмом, превращается в тепло и утрачивается для экосистемы. Она не может быть снова "пущена в дело" как вода или неорганические вещества, по отношению к которым используется термин круговорот воды и веществ. Для своей жизнедеятельности каждый живой компонент, будь то организм или экосистема, должен получать от окружающей среды на входе постоянный приток дополнительной энергии. Живые замкнутые термодинамические системы невозможны.

Предмет исследования биоэнергетики. Первое начало термодинамики.

Жизненные процессы, при  всем многообразии, имеют и общие черты, в частности, любой из процессов требует затрат энергии. В этой связи важным направлением биофизических исследований является изучение преобразования энергии в биологических системах. Процессы энергообеспечения организма за счет внешних энергетических ресурсов, составляют предмет исследования биоэнергетики. В биоэнергетике выделены два подхода:

1) исследуются механизмы  энергетических процессов, протекающие  в организме на молекулярном  и субмолекулярном уровнях;

2) изучаются особенности биологических процессов на основе общих законов превращения энергии, без детального изучения их молекулярных механизмов. Это составляет содержание биологической термодинамики.

В термодинамике объектом исследования служит система, под которой  понимают совокупность объектов, ограниченных в той или иной степени от окружающей среды. Различают изолированные системы, которые не обмениваются энергией, веществом и информацией с окружающей средой и открытые системы, где такой обмен происходит. Живой организм относится к открытой системе.

Состояние любой системы  характеризуется некоторыми параметрами. Одни из них не зависят от массы  или числа частиц в системе, то есть, от размеров, другие параметры  пропорциональны этим аргументам. Первые получили название интенсивных термодинамических параметров, к ним относятся: температура, давление и т. д. Параметры второй группы называются экстенсивными термодинамическими параметрами. Например, это объем, энергия, энтропия и т. д.

Энергию системы можно  представить, состоящей из двух частей: Wy+U=W

Wy - энергия системы, как целого;

U - внутренняя энергии (энергия атома и т. д.).

Смысл первого начала термодинамики сводится к тому, что  изменение внутренней энергии системы  может произойти только при обмене энергией с окружающей средой. Энергетический обмен между системой и средой осуществляется двумя способами: посредством передачи тепла и (или) совершением работы.

U=Q-A

Q - количество тепла;

A - работа.

Q=U+A - первое начало термодинамики.

Знак в формуле принимает  следующие образы:

- положительным считают то тепло, которое получает система из окружающей среды;

- работу считают положительной,  когда система производит ее  над окружающими телами.

Рассмотрим некоторые  способы совершения работы:

dA=fdl - механическая работа. 

dA=Pd - работа при постоянном объеме. 

dA=Udq - работа при перемещении заряда и разность потенциалов. 

Pос - осмотическое давление.

х - химический потенциал.

f, p, u ... - величины, вызывающие причины действия работы, интенсивные параметры.

dA=Xdx

X - обобщающая сила, которая вызывает работу;

Dx - обобщающая координата.

Dl, d, … - экстенсивные параметры.   

Количество тепла, получаемое системой, определяется изменением внутренней энергии  системы, а также суммой всех видов  работы, совершенной системой.

Второе начало термодинамики

Второе начало термодинамики  устанавливает наличие в природе  фундаментальной асимметрии, т.е. однонаправленности всех происходящих в ней самопроизвольных процессов.

Второй основной постулат термодинамики связан так же с  другими свойствами термодинамического равновесия как особого вида теплового движения. Опыт показывает, что если две равновесные системы А и В привести в тепловой контакт, то независимо от различия или равенства у них внешних параметров они или остаются по прежнему в состоянии термодинамического равновесия, или равновесие у них нарушается и спустя некоторое время в процессе теплообмена (обмена энергией) обе системы приходят в другое равновесное состояние. Кроме того, если имеются три равновесные системы А, В и С и если системы А и В порознь находятся в равновесии с системой С, то системы А и В находятся в термодинамическом равновесии и между собой (свойства транзитивности термодинамического равновесия).

Пусть имеются две  системы. Для того, чтобы убедится в том, что они находятся в  состоянии термодинамического равновесия надо измерить независимо все внутренние параметры этих систем и убедиться в том, что они постоянны во времени. Эта задача чрезвычайно трудная.

Оказывается однако, что  имеется такая физическая величина, которая позволяет сравнить термодинамические состояния двух систем и двух частей одной системы без подробного исследования и внутренних параметров. Эта величина, выражающая состояние внутреннего движения равновесной системы, имеющая одно и то же значение у всех частей сложной равновесной системы независимо от числа частиц в них и определяемое внешними параметрами и энергией называется температурой.

Температура является интенсивным  параметром и служит мерой интенсивности теплового движения молекул.

Изложенное положение  о существовании температуры как особой функции состояния равновесной системы представляет второй постулат термодинамики.

Иначе говоря, состояние  термодинамического равновесия определяется совокупностью внешних параметров и температуры.

Р. Фаулер и Э. Гуггенгейм назвали его нулевым началом, так как оно подобно первому и второму началу определяющим существование некоторых функций состояния, устанавливает существование температуры у равновесных систем. Об этом упоминалось выше.

Итак, все внутренние параметры равновесной системы являются функциями внешних параметров и температур. (Второй постулат термодинамики).

Выражая температуру  через внешние параметры и  энергию, второй постулат можно сформулировать в таком виде: при термодинамическом  равновесии все внутренние параметры являются функциями внешних параметров и энергии.

Второй постулат позволяет  определить изменение температуры  тела по изменению какого либо его  параметра, на чем основано устройство различных термометров.

Термодинамическое равновесие — состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз.

Энтропи́я (от др.-греч. ἐντροπία — поворот, превращение) — в естественных науках мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либо макроскопического состояния; в теории информации — мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).

Негэнтропи́я — философский термин, образованный добавлением отрицательной приставки нег- (от negative) к слову энтропия. В простом понимании, энтропия — хаос, саморазрушение и саморазложение. Соответственно, негэнтропия — движение к упорядочиванию, к организации системы. По отношению к живым системам: для того, чтобы не погибнуть, живая система борется с окружающим хаосом путем организации и упорядочивания последнего, то есть импортируя негэнтропию.[1] Таким образом объясняется поведение самоорганизующихся систем.

Загрязнители окружающей природной среды (ОПС). Их классификация.

Окружающая  природная среда (ОПС) - это вся земная природа, окружающая человека, где естественные факторы функционируют в органическом единстве с продуктами человеческого труда.

Загрязнители (загрязняющие вещества - ЗВ, поллютанты, токсичные, опасные или вредные вещества) - это неутилизированные материальные и энергетические отходы производства, а также естественные компоненты, нехарактерные для данной среды, оказывающие нежелательное действие на человека и ценные для него ресурсы живой (биотической) и неживой (абиотической) природы. К основным ЗВ обычно относят: взвешенные частицы, диоксид серы, оксид углерода, диоксид углерода, углеводороды и др.

Предельно допустимая концентрация (ПДК) - это экологический норматив, максимальная концентрация 3В в элементах ландшафта, которая при повседневном влиянии в течение длительного времени не вызывает негативных воздействий на организм человека или другого рецептора (определенный вид животных, растений). 
Загрязнение - неблагоприятное изменение окружения, являющегося побочным результатом деятельности человека. Привнесение в среду новых, не характерных для нее физических, химических или биологических компонентов или превышение естественного многолетнего содержания этих компонентов. Воздух, вода, почва - объекты загрязнения. Растения, животные микроорганизмы, человек. 

Информация о работе Контрольная работа по "Экологии"