Энергопотребление и биосфера

Автор: Пользователь скрыл имя, 13 Июня 2014 в 18:36, реферат

Краткое описание

Химические превращения в природе и все биологические процессы в экосистемах подчиняются законам термодинамики. Согласно первому закону, называемому законом сохранения энергии, для любого химического процесса общая энергия в замкнутой системе всегда остается постоянной.
Энергия не создается заново и никуда не исчезает. Свет как одна из форм энергии может быть превращен в работу, теплоту или потенциальную энергию химических веществ пищи. Из этого следует, что если какая-либо система (как неживая, так и живая) получает или затрачивает энергию, то такое же количество энергии должно быть изъято из окружающей ее среды. Энергия может лишь перераспределяться либо переходить в другую форму в зависимости от ситуации, но при этом она не может возникнуть ниоткуда или бесследно исчезнуть.

Оглавление

Введение 3
1. Жизнь как термодинамический процесс 4
2. Энергопотребление и биосфера 9
3. Народонаселение и устойчивость биосферы 12
4. Рост уровня производства и неравномерность потребления как
фактор нарушения устойчивости 14
5. Антропогенное энергопотребление как критерий устойчивости биосферы 16
6. Экологическая характеристика источников энергии 20
6.1. Экологическая характеристика гидроэнергетики. —
6.2. Экологическая характеристика атомных электростанций 23
6.3. Экологическая характеристика альтернативных источников энергии.
Солнечные батареи или СЭС 27
6.4. Ветровые электростанции (ВЭС) 29
6.5. Геотермальные электростанции (ГеоГЭС) 30
Заключение 31
Список использованной литературы и источников 33

Файлы: 1 файл

экология реф.doc

— 202.50 Кб (Скачать)

В числе побочных продуктов работы АЭС образуется плутоний, который может быть использован для изготовления атомных бомб. Ежегодное производство плутония в мире в ближайшие годы составит 1,5 млн кг, а для изготовления бомбы с зарядом мощностью 20 кт требуется лишь 8 кг плутония. С каждым годом растет число стран, имеющих атомные станции и, следовательно, ядерные материалы. Соответственно, возрастает и опасность распространения ядерного оружия.

Таким образом, развитие ядерной энергетики ставит перед человечеством новые острые политические проблемы. Предотвратить распространение ядерного оружия призванотМеждународное агентство по атомной энергетике(МАГАТЭ). Важнейшая задача агентства — содействовать мирному использованию атомной энергии и препятствовать распространению ядерного оружия. МАГАТЭ осуществляет контроль за ядерными материалами, стремясь не допустить их применения в военных целях.

3.3. Экологическая характеристика альтернативных источников энергии. Солнечные батареи или СЭС

Солнечная энергия обладает неоспоримыми преимуществами перед традиционными органическим и ядерным горючим. Это исключительно чистый вид энергии, который не загрязняет окружающую среду, а само ее использование не связано ни с какой биологической опасностью. Использование солнечной энергии в больших масштабах не нарушает сложившегося в эволюции энергетического баланса нашей планеты

Это практически неисчерпаемый источник энергии. Ее можно использовать прямо (посредством улавливания техническими устройствами) или опосредованно через продукты фотосинтеза, круговорот воды, движение воздушных масс и другие процессы, которые обусловливаются солнечными явлениями.

Использование солнечного тепла — наиболее простой и дешевый путь решения отдельных энергетических проблем. Подсчитано, что в США для обогрева помещений и горячего водоснабжения расходуется около 25% производимой в стране энергии. В северных странах, в том числе и в России, эта доля заметно выше. Между тем, значительная доля тепла, необходимого для этих целей, может быть получена посредством улавливания энергии солнечных лучей. Эти возможности тем значительнее, чем больше прямой солнечной радиации поступает на поверхность Земли.

Отопление и горячее водоснабжение как низкотемпературные процессы преобразования солнечной энергии в теплоту могут быть осуществлены сравнительно простыми техническими средствами. Солнечные водонагреватели начинают использоваться для целей тепло- и горячего водоснабжения индивидуальных потребителей в южных климатических зонах.

Наиболее распространено улавливание солнечной энергии посредством различного вида коллекторов. В простейшем виде это темного цвета поверхности для улавливания тепла и приспособления для его накопления и удержания. Оба блока могут представлять единое целое. Коллекторы помещаются в прозрачную камеру, которая действует по принципу парника. Имеются также устройства для уменьшения рассеивания энергии (хорошая изоляция) и ее отведения, например, потоками воздуха или воды.

Еще более просты нагревательные системы пассивного типа. Циркуляция теплоносителей здесь осуществляется в результате конвекционных токов: нагретый воздух или вода поднимается вверх, а их место занимают более охлажденные теплоносители. Примером такой системы может служить помещение с обширными окнами, обращенными к солнцу, и хорошими изоляционными свойствами материалов, способными длительно удерживать тепло. Для уменьшения перегрева днем и теплоотдачи ночью используются шторы, жалюзи, козырьки и другие защитные приспособления. В данном случае проблема наиболее рационального использования солнечной энергии решается через правильное проектирование зданий. Некоторое удорожание строительства перекрывается эффектом использования дешевой и идеально чистой энергии.

3.4. Ветровые электростанции (ВЭС)

Ветровые электростанции традиционно являются самыми древними. Их мощности могут варьироваться от совсем маленьких до очень мощных 5МВт. Но несмотря на всю их экологичность, у них есть свои отрицательные стороны.

Ветряки распугивают птиц и зверей, нарушая их естественный образ жизни, а при большом их скоплении на одной площадке могут существенно исказить естественное движение воздушных потоков с непредсказуемыми последствиями. Во многих странах, в том числив Ирландии, Англии и других, жители неоднократно выражали протесты против размещения ВЭС вблизи населенных пунктов и сельскохозяйственных угодий, а в условиях густо населенной Европы это означает — везде.

Было выдвинуто предложение о размещении систем ветряков в открытом море. Так, в Швеции разработан проект, согласно которому предполагается в Балтийском море недалеко от берега установить 300 ветряков. На их башнях высотой 90 м будут вращаться двухлопастные пропеллеры с размахом лопастей 80 м. Стоимость строительства только первой сотни таких гигантов потребуется более 1 млрд долл, а вся система, на строительство которой уйдет минимум 20 лет, обеспечит производство всего 2% электроэнергии от уровня потребления в Швеции в настоящее время. Это пока проектируется, но в настоящее время в Швеции начато строительство одной ВЭС мощностью 200 кВт на расстоянии 250 м от берега, которая будет передавать энергию на землю по подводному кабелю. Аналогичные проекты были и у нас: предлагали устанавливать ветряки и на акватории Финского залива, и на Арабатской стрелке в Крыму. Помимо сложности и дороговизны подобных проектов, их реализация создала бы серьезные помехи судоходству, рыболовству, а также оказала бы все те же вредные экологические воздействия, о которых говорилось ранее. Поэтому и эти планы вызывают движения протеста. Например, шведские рыбаки потребовали пересмотра проекта строящейся в море ВЭС, так как, по их мнению, подводный кабель, да и сама станция будут плохо влиять на рыб, в частности, на угрей, мигрирующих в тех местах вдоль берега.

Неприятным побочным эффектом использования ветряков для сторонников экологически чистого хозяйства оказались биологические последствия. Союзы охраны природы отмечают, что многие перелетные птицы вынуждены менять свои маршруты, избегая ветряных парков — мельницы отпугивают птиц. В ряде случаев положение сложилось настолько серьезное, что местные экологи вынуждены были поставить вопрос о временном закрытии установок или о переводе их на более гибкий режим работы с учетом сезонных перемещений птиц

3.5. Геотермальные электростанции (ГеоГЭС)

В данном случае источником тепла являются разогретые воды, содержащиеся в недрах земли. В отдельных районах такие воды изливаются на поверхность в виде гейзеров (например, на Камчатке). Геотермальная энергия может использоваться как в виде тепловой, так и для получения электричества.

Ведутся также опыты по использованию тепла, содержащегося в твердых структурах земной коры. Такое тепло из недр извлекается посредством закачки воды, которую затем используют так же, как и другие термальные воды.

Уже в настоящее время отдельные города или предприятия обеспечиваются энергией геотермальных вод. Это, в частности, относится к столице Исландии — Рейкьявику. В начале 80-х годов в мире производилось на геотермальных электростанциях около 5000 МВт электроэнергии (примерно 5 АЭС). В России значительные ресурсы геотермальных вод имеются на Камчатке, но используются они пока в небольшом объеме. В бывшем СССР за счет этого вида ресурсов производилось только около 20 МВт электроэнергии.

Достоинства использования глубинного тепла земли очевидны. ГеоТЭС может функционировать десятки лет, используя практически неугасаемые тепловые котлы. Себестоимость электроэнергии, получаемой таким образом, несмотря на значительные первоначальные затраты, вполне сравнима с той, которую мы имеем на тепловых и атомных электростанциях. Кроме того, ГеоТЭС не наносит урона экологии, не загрязняет выбросами окружающую среду.

Использование тепла земных недр весьма перспективно с позиций охраны окружающей среды. В настоящее время во многих странах мира для выработки электроэнергии и отопления зданий, подогрева теплиц и парников используется тепло горячих источников. Речь идет об огромных резервах экологически чистой тепловой энергии, о возможности с большим экономическим эффектом заменить до 1,5 млн т органического топлива в важнейших отраслях, включая сельское и коммунальное хозяйства.

Геотермальные электростанции по компоновке, оборудованию, эксплуатации мало отличаются от традиционных ТЭС и практически не вызывают экологических последствий. Температура месторождений геотермальных вод Камчатки доходит до 257°С, глубина залегания —1200 м. Выявленные в этом районе тепловые ресурсы могли бы обеспечить работу геотермальных электростанций общей мощностью 350—500 МВт.

 

 

 

 

 

 

 

Список использованной литературы и источников

(Николайкин Н. И.
Экология: Учеб. для вузов / Н. И. Николайкин, Н. Е. Ни-

колайкина, О. П. Мелехова. — 3-е изд., стереотип. — М.: Дро­ фа, 2004. — 624 с: ил.

 

2. Одум Ю. Экология: В 2 т. - М.: Мир, 1986.

  1. «Экология и техника: Проблемы оптимальной ориентации развития техники» Мамедов. В. Ф. 1988.
  2. «Экология – Природа – Человек – Техника» Акимова О.Г. 1999г.
  3. «Курс инженерной экологии» Мазур А.А. 2001.

 

 

1 Энтропия определяется количеством теплоты, необходимой для изменения температуры от абсолютного нуля (максимальная упорядоченность) до наблюдаемой температуры, определяемой по шкале Кельвина.

2 Фоссилизация (от лат. fossilis — ископаемый) — процесс превращения останков вымерших животных и растений в окаменелости путем замещения органических веществ минеральными.

 

3 По данным Н. Ф. Реймерса, сейчас не менее 10%, а по расчетам В. Г. Горшкова (1980) человечество берет на себя, в свой «антропогенный канал», энергии не менее 1,6 • 101 3 Вт/г., или до 20% продукции всей биосферы.

4 Тут — тонна условного топлива. За условное принимают такое топливо, которое имеет теплоту сгорания 29,3 МДж (7000 ккал) на 1 кг твердого или 1 м3 газообразного вещества. При технико-экономических расчетах использование понятия «условное топливо» позволяет сравнивать органическое топливо (и даже электроэнергию) разной тепловой ценности.

 


 



Информация о работе Энергопотребление и биосфера