Автор: Пользователь скрыл имя, 17 Декабря 2012 в 18:18, лекция
Гидрографическая сеть. Речные системы. Главные реки и их притоки. Вода, поступающая на поверхность земли в виде осадков или выходящих подземных потоков, собирается в понижениях рельефа и, стекая под действием силы тяжести в направлении понижения местности, образует поверхностные водотоки.
Рис. 7. Циркуляционные течения на прямолинейном (а) и на изогнутом (б) участке русла (по Н. С. Лелявскому).
1 — план поверхностных и донных струй, 2 — циркуляционные течения в вертикальной плоскости, 3 — винтообразные течения.
На изогнутых участках русла струи воды, встречаясь с вогнутым берегом, отбрасываются от него. Массы воды, переносимые этими отраженными струями, обладающими меньшими скоростями, накладываясь на массы воды, переносимые набегающими на них следующими струями, повышают уровень водной поверхности у вогнутого берега. Вследствие этого возникает перекос водной поверхности, и струи воды, находящиеся у вогнутого берега, опускаются по откосу его и направляются в придонных слоях к противоположному выпуклому берегу. Возникает циркуляционное течение на изогнутых участках рек (рис. 7б).
Появление поперечных течений на закруглениях русла объясняется развивающейся здесь центробежной силой инерции и связанным с ней поперечным уклоном водной поверхности. Центробежная сила инерции, возникающая на закруглениях, неодинакова на различных глубинах.
Рис. 8. Схема сложения сил, вызывающих циркуляцию.
а — изменение по вертикали центробежной силы P1, б — избыточное давление, в — результирующая эпюра действующих на вертикали сил центробежной и избыточного давления, г — поперечная циркуляция.
У поверхности она больше, у дна меньше вследствие уменьшения с глубиной продольной скорости (рис. 8а). При перекосе водной поверхности возникает избыточное давление iпопg. где g — вес единицы объема воды; iпоп — поперечный уклон. Оно одинаково для каждой точки вертикали и направлено в противоположную сторону по отношению к центробежной силе инерции (рис. 8б, в). Вследствие неуравновешенности этих сил в отдельных точках по вертикали и возникает в потоке поперечная циркуляция (рис. 8г).
В зависимости от направления излучины отклоняющая сила Кориолиса или усиливает, или ослабляет поперечные течения на закруглении. Эта же сила возбуждает поперечные течения на прямолинейных участках.
При низких уровнях на закруглении циркуляционные течения почти не выражены. С повышением уровней, увеличением скорости и центробежной силы циркуляционные течения становятся отчетливыми. Скорость поперечных течений обычно мала — в десятки раз меньше продольной составляющей скорости. Описанный характер циркуляционных течений наблюдается до выхода воды на пойму. С момента выхода воды на пойму в реке создаются как бы два потока — верхний, долинного направления, и нижний, в коренном русле. Взаимодействие этих потоков сложно и еще мало изучено.
Вихревые движения
Помимо поперечных циркуляции, в потоке наблюдаются вихревые движения с вертикальной осью вращения (рис. 9). Одни из них подвижны и неустойчивы, другие стационарны и отличаются большими поперечными размерами. Чаще они возникают в местах слияния потоков, за крутыми выступами берегов, при обтекании некоторых подводных препятствий и т. д. Условия формирования стационарных вихрей пока не исследованы. Вероятно, образованию устойчивого локализованного вихря способствует значительная глубина потока и существование восходящего течения воды. Эти вихри в потоке, известные под названием водоворотов, напоминают воздушные вихри — смерчи.
Рис. 9 Схема вихрей с вертикальными осями (по К. В. Гришанину).
Поперечные циркуляции, вихревые движения играют большую роль в транспортировании наносов и формировании речных русел.
Основные закономерности структуры гидрографической сети. Густота речной сети. В зависимости от характера грунтов бассейна, рельефа местности, растительного покрова и количества выпадающих осадков русловая сеть обычно имеет различную разветвленность. В условиях легко проницаемых грунтов большая часть выпадающих осадков достигает речного русла подземным стоком, вследствие чего в этом случае русловая сеть менее развита. В горных районах, где осадков обычно больше, чем на равнине, а грунты менее проницаемы, густота русловой сети больше, чем в равнинных.
В лесных районах вследствие более благоприятных условий для фильтрации воды наблюдается несколько меньшая густота русловой сети, чем в безлесных.
Следует учитывать, что в изолированном виде трудно установить влияние какого-либо одного из указанных факторов; в большинстве случаев они совместно определяют условия развития русловой сети, хотя нередко какой-либо из них оказывает наибольшее воздействие. Это иногда приводит к противоречивым оценкам роли отдельных факторов в формировании речной сети.
Так, например, в гидрологической литературе встречаются утверждения, что повышенное развитие речной сети наблюдается на заболоченных территориях, в озерных котловинах и в других местах, где грунтовые воды находятся близко к земной поверхности, в то же время отмечается, что рельеф местности сравнительно мало влияет на плотность русловой сети.
Густота русловой сети обычно определяется как отношение длины всех водотоков данной площади, выраженной в километрах, к величине этой площади, выраженной в квадратных километрах, т. е.
Из определения понятия густоты русловой сети ясно, что числовые значения густоты русловой сети будут сравнимы между собой для отдельных районов, если они получены по данным карт одних и тех же масштабов и съемкам одной и той же степени полноты. Действительно, на картах мелких масштабов очень малые водотоки не могут быть показаны и, следовательно, общая длина водотоков окажется меньше, чем в том случае, когда определение длин производилось по картам более крупных масштабов.
Чем крупнее масштаб, тем точнее определяется густота русловой сети.
Наиболее часто определение густоты русловой сети производится следующим образом: рассматриваемая территория разбивается на сеть равновеликих квадратов и измеряется суммарная длина водотоков, находящихся в пределах каждого квадрата.
Разделив найденное значение на площадь квадрата, получим густоту речной сети в пределах этого квадрата.
Иногда степень развитости русловой сети характеризуют расчлененностью рельефа, определяя величину площадей, ограниченных двумя соседними реками и линией, проводимой между их истоками.
Густота русловой сети характеризует и средние расстояния между смежными водотоками. Справедливость этого вытекает из следующих рассуждений.
Представим себе, что какая-то часть территории равномерно покрыта водотоками (в том числе и пересыхающими), причем на всей площади F число таких водотоков п и длина каждого L. Тогда можно считать, что к каждому водотоку длиной L будет примыкать площадка f=F/n.
Для густоты русловой сети d имеем
а отсюда
Но отношение площади примыкающего к водотоку участка к длине участка равно ширине участка, т. е. расстоянию от данного водотока до ближайшего.
Для случая неравномерного распределения русловой сети величина l/d, очевидно, есть среднее расстояние между водотоками, а величина l/2d характеризует среднюю ширину склонов, с которых вода поступает в водотоки.
Учитывая, что тальвег водотока обычно начинается не от водораздела, а лишь на некотором расстоянии от него, среднюю ширину склона иногда рекомендуют вычислять по соотношению b = l/2,25d
Склоновая эрозия. Помимо основной гидрографической сети, образуемой системой ложбин, лощин, суходолов, малых рек, ручьев и реками средних и больших размеров, на поверхности земли имеется многочисленная сеть мельчайших борозд, промоин и ложбинок, распределенных в соответствии с микрорельефом местности. Поэтому поверхностный сток дождевых, ливневых и талых вод происходит обычно не сплошным слоем, а струями различной величины. Указанное струйчатое строение склонового стока обусловливает смывание верхнего слоя почвы. Этот процесс смывания почв поверхностным стоком носит название плоскостной эрозии.
При больших уклонах поверхности и на длинных склонах мельчайшие струйки сливаются в более крупные ручейки, которые создают более крупные струйчатые, или ручейковые, размывы-рытвины, или ложбины. Если глубина этих ложбин не препятствует обычной обработке почвы и ложбины могут быть сглажены при очередной вспашке, то эта стадия развития называется струйчатым подтипом плоскостной эрозии. В тех случаях, когда ложбины и размывы, созданные концентрированными потоками талых и ливневых вод, не могут быть сглажены обычной обработкой почвы, возникает новый тип водной эрозии — овражная эрозия. Овражная эрозия является следующим этапом развития струйчатой эрозии.
Поверхностный и подземный водосборы. Водоразделы. Деление и смешение вод. После выяснения исходных понятий, относящихся к характеристике гидрографической сети вообще и русловой в частности, рассмотрим более подробно структуру речных бассейнов. Территория земной поверхности, включая толщу почво-грунтов, откуда данная речная система или отдельная река получает водное питание, называется бассейном речной системы или реки. Бассейн каждой реки включает в себя поверхностный и подземный водосборы.
Поверхностный водосбор представляет собой площадь земной поверхности, с которой воды поступают в данную речную систему или отдельную реку.
Подземный водосбор образуют толщи почво-грунтов, из которых вода поступает в речную сеть.
Поверхностный водосбор каждой реки отделяется от водосбора соседней реки водоразделом, проходящим по наиболее высоким точкам земной поверхности, расположенным между водосборами соседних рек. В общем случае поверхностный и подземный водосборы рек не совпадают. Однако в силу больших затруднений в определении границы подземного водосбора часто во всех расчетах и при анализе явления стока за величину бассейна принимают только поверхностный водосбор и вследствие этого не делают различия между терминами «речной бассейн» и «речной водосбор». Ошибки, возникающие в результате условного отождествления размеров бассейна и поверхностного водосбора, могут оказаться существенными только для малых рек и для рек, протекающих в геологических условиях, обеспечивающих хороший водообмен между бассейнами соседних рек (районы распространения карста). Для малых бассейнов ошибки могут оказаться велики потому, что те добавочные площади, которые в связи с несовпадением поверхностного и подземного водоразделов нужно прибавить или отнять от общей площади бассейна, в процентном отношении будут более значительными, чем для больших бассейнов.
В пределах бассейнов, расположенных
на плоских равнинных
Размеры бессточных областей могут меняться в зависимости от водности года: в многоводные годы они сокращаются, в маловодные увеличиваются.
Процесс эрозии, продолжающийся непрерывно в течение весьма длительного периода, может закончиться прорывом водораздельной линии двух соседних рек. Такое явление называется перехватом, или смешением (соединением), вод (рис. 10).
Рис. 10. Схема готовящегося речного перехвата.
Иногда смешение вод
может осуществиться в
В условиях равнинного рельефа иногда встречаются случаи соединения в верховьях рек, текущих в различных направлениях. Происходящее распределение поверхностного стока в верховьях различных речных систем называют делением вод. Случаи деления вод особенно широко распространены среди рек, протекающих по плоским, заболоченным территориям.
Отмеченные условия
изменения границ бассейнов нужно
особо иметь в виду при исследовании
вопросов стока с малых низменно-
Руководствуясь положением истоков соседних рек и сообразуясь с рельефом местности, можно на карте провести линию водораздела и тем самым выделить водосборную площадь реки.
Применительно к различным задачам приходится принимать во внимание водосборную площадь или всей реки, или отдельных ее частей.
Морфометрические характеристики речного бассейна. Особенности геометрического строения речных водосборов обычно характеризуют некоторыми количественными показателями - морфометрическими характеристиками. Среди этих характеристик основными исходными являются длина реки и площадь водосбора.
Длиной реки называется расстояние от истока до устья в километрах; счет километров принято вести от устья как от более определенной точки, чем исток. Следует при этом иметь в виду, что при сложном строении устьевой области выбор начального створа отсчета является условным. Однако при значительной длине реки это обстоятельство не имеет существенного значения, тем более, что устьевой створ принимается постоянным при всех последующих измерениях. Значительно большее влияние на измеряемую длину оказывает извилистость реки и масштаб топографической карты. Чем крупнее масштаб карты, тем точнее можно определить длину реки. Влияние извилистости на длину реки, измеренную по карте, учитывается введением поправок, установленных для различных категорий извилистости (рис. 11).