Автор: Пользователь скрыл имя, 18 Июня 2015 в 22:46, дипломная работа
При выполнении дипломного проекта была проведена разработка распределительной системы управления технологическим процессом производства рукавной пленки с применением современных микропроцессорных модулей ввода аналоговых сигналов МВА8 и модулей вывода управляющих сигналов МВУ8, работающих в единой промышленной компьютерной сети RS-485 в комплекте с ПЛК154. При создании данной системы управления были использованы общепринятые во всем мире программные продукты разработки автоматизированных систем управления такие как: интегрированная среда программирования SCADA и инструментальная среда для программирования контроллеров CoDeSys.
Конечным результатом данного дипломного проекта явилась разработка системы управления технологическим процессом производства рукавной пленки работающей в режиме реального времени
Нагрев полимера в зоне I происходит за счет диссипативного тепла, выделяющегося при трении материала и за счет дополнительного тепла от нагревателей, расположенных по периметру цилиндра.
Иногда количество диссипативного тепла может быть достаточным для плавления полимера, и тогда нагреватели отключают. На практике такое происходит редко.
При оптимальной температуре процесса полимер спрессован, уплотнен и образует в межвитковом пространстве твердую пробку (см. рис. 2). Лучше всего, если такая скользящая пробка образуется и сохраняется на границе зон I и II. Свойства пробки во многом определяют производительность машины, стабильность транспортировки полимера, величину максимального давления и т. д.
Зона пластикации и плавления (II). В начале зоны II происходит подплавление полимера, примыкающего к поверхности цилиндра. Расплав постепенно накапливается и воздействует на убывающую по ширине пробку. Поскольку глубина нарезки шнека уменьшается по мере продвижения материала от зоны I к зоне III, то возникающее давление заставляет пробку плотно прижиматься к горячей стенке цилиндра, происходит плавление полимера.
В зоне пластикации пробка плавится также и под действием тепла, выделяющегося вследствие внутреннего, вязкого трения в материале в тонком слое расплава , где происходят интенсивные сдвиговые деформации. Последнее обстоятельство приводит к выраженному смесительному эффекту. Расплав интенсивно гомогенизируется, а составляющие композиционного материала перемешиваются.
Конец зоны II характеризуется распадом пробки на отдельные фрагменты. Далее расплав полимера с остатками твердых частиц попадает в зону дозирования.
Основной подъем давления P расплава происходит на границе зон I и II. На этой границе образующаяся пробка из спрессованного материала как бы скользит по шнеку: в зоне I это твердый материал, в зоне II- плавящийся. Наличие этой пробки и создает основной вклад в повышение давления расплава. Также увеличение давления происходит за счет уменьшения глубины нарезки шнека. Запасенное на выходе из цилиндра давление расходуется на преодоление сопротивления сеток, течения расплава в каналах головки и формования изделия.
Зона дозирования (III). Продвижение гетерогенного материала (расплав, частички твердого полимера) продолжает сопровождаться выделением внутреннего тепла, которое является результатом интенсивных сдвиговых деформаций в полимере. Расплавленная масса продолжает гомогенизироваться, что проявляется в окончательном плавлении остатков твердого полимера, усреднении вязкости и температуры расплавленной части.
В межвитковом пространстве расплав имеет ряд потоков, основными из которых являются продольный и циркуляционный.
Величина продольного (вдоль оси шнека) потока определяет производительность экструдера Q, а циркуляционного - качество гомогенности полимера или смешения компонентов.
В свою очередь продольный поток складывается из трех потоков расплава: прямого, обратного и потока утечек. Прямой поток вызван движением шнека в направлении формующей головки. Обратный поток – это воображаемое течение, вызываемое высоким давлением со стороны головки; в реальности не существует. Поток утечки происходит при перетекании расплава между цилиндром и гребнем червяка.
Производительность Q экструдера с учетом распределения скоростей различных потоков составляет:
Q = Qпр - Qобр – Qут,
где Qпр, Qобр, Qут - производительности экструдера от прямого потока, противотока и утечек расплава соответственно.
Q= αn – β•(∆P)/(μ•L),
где n - частота вращения шнека;
∆P - давление на выходе из шнека (в конце зоны III);
μ - эффективная вязкость расплава;
L – длина шнека;
α – константа скорости прямого потока,
β – константа скорости обратного потока, которые зависят от геометрических параметров шнека.
Основные параметры процесса экструзии. К технологическим параметрам относятся температура переработки полимера, давление расплава, температура зон головки и температурные режимы охлаждения сформованного экструдата.
При слишком высокой вязкости расплава получать изделия методом экструзии трудно из-за большого сопротивления течению расплава, возникновения неустойчивого режима движения потока. Все это приводит к образованию дефектов изделий.
Повышение температуры переработки может привести к термодеструкции расплава, а увеличение давления, мощности привода при более низких температурах - к механодеструкции, т.е. для экструзии расплавов должны применяться полимеры с довольно узким интервалом колебания вязкости.
Основными технологическими характеристиками одношнекового экструдера являются L, D, L/D, скорость вращения шнека n, геометрический профиль шнека и степень сжатия (компрессии) – отношение объема одного витка червяка в зоне загрузки к объему одного витка в зоне дозирования.
Короткошнековые экструдеры имеют L/D= 12-18, длинношнековые L/D> 30. Наиболее распространены экструдеры с L/D = 20-25.
Показателем работы экструдера является его эффективность- отношение производительности к потребляемой мощности.
1.2 Описание технологического процесса и оборудования
Полимерные пленочные материалы нашли широкое применение в различных областях техники, в сельском хозяйстве, пищевой промышленности, в быту. Методом экструзии получают до 80% всех произведенных пленок. Широкому распространению рукавной технологии в немалой мере способствует ее универсальность по виду перерабатываемых термопластов, высокая производительность технологических линий, возможность получения многослойных изделий с варьируемыми свойствами, быстрая окупаемость капиталовложений. В настоящее время возможно производство рукавной пленки толщиной от 2-3 до 1000 мкм с периметром рукава до 52 м и числом слоев до 7.
Для производства пленок в основном используются термопласты ПЭНП, ПЭВП, ПП, ПА, ПВХ, а также ЛПЭНП, СЭВА и Темплен. Принцип рукавной технологии состоит в следующем. Полимер поступает в экструдер, расплавляется и выдавливается из формующей головки в виде рукава, незамедлительно раздуваемого воздухом до требуемых размеров, и затем складывается в двухслойное полотно.
Существуют три основные схемы производства рукавной пленки: приемкой раздуваемого рукава вверх (наиболее распространена), вниз и в горизонтальном направлении.
Достоинства первой схемы производства: рукав висит на тянущих валках, вследствие чего нагрузка на участок его раздувания (вблизи головки) минимальна; нагрузка на рукав от силы его веса распределена равномерно по периметру, что способствует равнотолщинности изделия; обеспечивается получение как толстых, так и предельно тонких пленок; минимальная производственная площадь. Недостатки: медленное остывание рукава по его высоте, и, следовательно, необходимость дополнительных систем охлаждения.
При работе по второй схеме возможен самопроизвольный отрыв рукава и его вытягивание. Вместе с тем рукав быстро охлаждается, что позволяет получать тонкую пленку с большей прозрачностью и дает возможность уменьшить строительную высоту установки. Горизонтальный вариант имеет больше недостатков, чем достоинств. Раздуваемый рукав провисает, охлаждение и напряжения по его периметру становятся неравномерными. Отсюда - разнотолщинность рукава и его разнопрочность в поперечном сечении. Поэтому эту схему применяют для производства пленок с невысокими требованиями, толщиной от 0,2 мм при минимальных степенях раздува, а также из вспенивающихся и термочувствительных (ПВХ) полимеров.
Гранулированный полимерный материал из технологической емкости пневмозагрузчиком доставляется в бункер, где происходит его окончательная подготовка (подсушка, предварительный нагрев) к переработке. Поступив в экструдер, полимер пластицируется, гомогенизируется и под давлением нагнетается в формующую головку, откуда выдавливается в виде рукавной заготовки, сечение которой определяется геометрией кольцевой щели головки. Внутрь заготовки через дорн головки при давлении 20-50 мм вод. ст. (2-4 кПа) подается воздух, под действием которого происходит раздув экструдата в поперечном направлении с образованием пленочного пузыря.
Для придания раздуваемому пузырю формоустоичивости его интенсивно охлаждают обдуванием холодным воздухом через дюзы наружного охлаждающего устройства. Для стабилизации формы рукава и ускорения его охлаждения также служит кольцевой бандаж.
Складывающие щеки преобразуют цилиндрический рукав диаметром в двухслойное полотно. В ряде случаев для уменьшения ширины полотна на нем формируют продольные боковые складки (фальцы) с помощью складывающего фальцовочного устройства треугольной или фасонной формы. Применение фальцовки позволяет уменьшить ширину полотна в 1,5-2 раза. Движение полотна и, соответственно, отвод рукава от головки осуществляется тянущим устройством с плавной регулировкой частоты вращения валков, один из которых или оба гуммируют. Скорость отвода рукава определяет степень продольной вытяжки пленки, а степень раздува - поперечную вытяжку. Ширительно-центрируюшие валки расправляют складки на полотне перед его разрезанием и намоткой в рулоны.
В современных линиях для производства рукавной пленки обеспечиваются:
• контроль и автоматическое регулирование температуры по зонам материальных цилиндров экструдеров и формующей головки;
• регулирование и контроль давления на входе в головку (до фильтра) и по мере движения в головке;
• автоматический контроль толщины пленки, толщины рукава экструдата, толщины кольцевой щели головки;
• автоматическое поддержание давления воздуха внутри раздуваемого рукава (пузыря); плавная автоматическая регулировка скорости вращения как шнеков, так и отводящих валков.
Во всех рукавных установках обязательно наличие устройств эффективного снятия с рукава и полотна статического электричества. Как правило, современные пленочные линии оснащены комплексом периферийных устройств, обеспечивающих производство различных штучных изделий из полученной пленки, например, пакетов. Основными стадиями технологического процесса являются подготовка сырья, пластикация полимера, формование рукавной заготовки, раздув заготовки и образование рукава (пузыря), его охлаждение и складывание в полотно, контроль качества пленки. Подготовительные операции включают сушку полимера, окрашивание и смешение гранул.
Пластикация полимера. Для пластикации используются преимущественно одночервячные экструдеры с диаметром шнека D 36,45,63,90,160 и реже 250 мм; с длиной червяка (25-32)D для достижения лучшей гомогенизации расплава и уменьшения пульсации расплава. Чем тоньше пленка или составляющие ее слои - тем длиннее должен быть червяк. Конструкция червяка, как правило, трехзонная (для ПВХ - двухзонная) с длиной зоны плавления (1-2)D, степень сжатия - до 4,2, загрузочная зона червяков - охлаждаемая. Материальный цилиндр обычно имеет 4-6 зон обогрева, причем температура должна регулироваться с точностью ±(1-1,5)°С.
Температура по зонам цилиндра определяется свойствами перерабатываемого полимера и вязкостью его расплава. При выборе режима пластикации учитывают, что температура материального цилиндра должна плавно возрастать от загрузочного отверстия к головке, перед входом в которую она максимальна.
Формование рукавной заготовки происходит в рукавной головке, в которую поток расплава полимера поступает из экструдера и затем выдавливается из кольцевого оформляющего зазора. С этой целью используют угловые или прямоточные головки, обычно с диаметром кольцевого зазора 250-750 мм. Воздух для пневморастягивания рукава подводится через дорн.
Обязательные требования к головкам - отсутствие застойных зон, равномерное и одинаковое по длине каналов движение расплава, равномерный, без пульсаций, выход рукава с равной по периметру толщиной стенки. Конструкция головки должна обеспечивать необходимое гидравлическое сопротивление (давление до 20-30 МПа), а ее устройство - легкую установку и разборку. Материал рабочих поверхностей головки должен быть коррозионностойким. Наибольшее распространение получили головки с центральным входом и винтовым распределительным каналом.
Расплав из материального цилиндра экструдера через фильтр поступает в головку снизу по угловому цилиндрическому каналу, обтекает дорн, приобретая кольцевое сечение, и затем выдавливается через формующий зазор между дорном и мундштуком. Протекая через отверстия в дорнодержателе, расплав рассекается на отдельные потоки, которые затем сливаются. Для предотвращения образования стыковых полос в местах соединения потоков расплава на дорне предусматривают спиральные распределительные каналы, турбулизующие и гомогенизирующие его.
Повышению качества пленки (равнотолщинность, отсутствие сварочных полос) способствует применение головок с вращающимися элементами. Вращающиеся головки, как правило, применяются при производстве пленок шириной 5 и более метров. Температура головки оказывает существенное влияние на такие эксплуатационные свойства пленки, как мутность, выражаемую в процентах, и глянцевитость, оцениваемую в условных единицах. Чем больше перепад между температурой головки, равной температуре экструдируемой рукавной заготовки, и температурой окружающего пространства, тем больше в полимере раздуваемого рукава содержание аморфной фазы и, соответственно, тем прозрачнее пленка.
Раздув заготовки и образование пузыря является важнейшей технологической операцией, формирующей физико-механические и эксплуатационные свойства изделия.
Параметры этой операции - степень раздува заготовки, продольная вытяжка рукава и его конфигурация в зоне раздувания. Степень раздува εр, при прочих равных условиях оказывает существенное влияние на равномерность пленки по толщине в поперечном направлении. Она определяется из соотношения: