Дистанционный мониторинг

Автор: Пользователь скрыл имя, 13 Сентября 2013 в 00:56, доклад

Краткое описание

Интенсивное воздействие человека на природу, негативные, часто необратимые последствия этого воздействия обусловливают необходимость глубокого и всестороннего анализа проблемы взаимодействия общества и природы. Такой анализ в настоящее время осуществляется в рамках природопользования.

Оглавление

Введение…………………………………………………………………………...3
1. Экологический мониторинг……………………………………………………4
2. Дистанционные методы мониторинга ………………………………………..6
2.1 Аэрокосмические………………………………..…………….………..6
2.2 Компьютерные методы обработки спутниковых данных…………..10
2.3 Фотосъемки…………………………………………………………….13
2.4 Сканерные съемки……………………………………………………..14
2.5 Радарные съемки………………………………………………….……15
2.6 Тепловые съемки………………………………………………………..16
2.7 Лидарные съемки………………………………………………………18
Вывод……………………………………………………………………….…..19
Список литературы……………………………………………………………20

Файлы: 1 файл

Дистанционный мониторинг.doc

— 109.00 Кб (Скачать)

 Рассмотрим основные  этапы обработки данных. В общем случае обработка данных дистанционного зондирования включает три этапа:

    • предварительная обработка — прием спутниковых данных, запись их на магнитный носитель, декодировка и корректировка, преобразование данных непосредственно в изображение или космический снимок или в форматы, удобные для последующих видов обработки;
    • первичная обработка — исправление искажений, вызванных нестабильностью работы космического аппарата и датчика, а также географическая привязка изображения с наложением на него сетки координат, изменение масштаба изображения и представление изображения в необходимой географической проекции (геокодирование);
    • вторичная (тематическая) обработка — цифровой анализ с применением статистических методов обработки, визуальное дешифрирование и интерпретация в интерактивном или полностью автоматизированном режиме.

 

Первый и второй этапы  обработки в настоящее время  могут быть выполнены на борту  космического аппарата.

Многозональная съемка ведется многие годы, и исследователи  накопили большой объём эмпирических данных. Уже хорошо известно, какие соотношения яркости в различных зонах спектра соответствуют растительности, обнаженной почве, водным поверхностям, урбанизированным территориям и другим распространенным типам ландшафта, существуют библиотеки спектров различных природных образований. Выразив эти соотношения в виде линейных комбинаций различных зон, можно получать так называемые индексы.

Так как многие современные  системы дистанционного зондирования Земли осуществляют съемку в видимой красной и ближней инфракрасной частях спектра, то распространенным методом является вычисление нормализованного вегетационного индекса (NDVI). Нормализованный вегетационный индекс показывает наличие и состояние растительности по соотношению отраженных энергий в 2 спектральных каналах. Вычисляется по следующей формуле: NDVI=NIR-RED/NIR+RED, где NIR — отражение в ближней инфракрасной области спектра; RED — отражение в красной области спектра. Эта зависимость основана на различных спектральных свойствах хлорофилла в видимом и ближнем ИК диапазонах. Вегетационные индексы можно рассматривать как промежуточный этап при переходе от эмпирических показателей к реальным физическим свойствам растительного покрова. Часто вычисляют универсальные и территориально-привязанные индексы: LAI — индекс листовой поверхности или FPAR — индекс фотосинтетической активной радиации, поглощаемый растительностью и пр. Индекс LAI можно измерить в натурных условиях. В настоящее время в Интернет ежемесячно публикуются растровые изображения LAI (пространственное разрешение 250 м) на весь мир. Эти данные в сочетании с методами классификации мультиспектральных изображений могут значительно повысить достоверность при обработке изображений в экспертных системах, учитывающих множество различной информации.

Как известно, антропогенное  воздействие на окружающую среду  приводит к возникновению масштабных трудноразрешимых противоречий между  интересами развития производства и  сохранением природы, поскольку  в результате интенсивного использования  природных ресурсов происходит разрушение природных систем и интенсивное загрязнение среды. Ещё в Стокгольме на Первой Международной конференции ООН по оценке состояния природной среды в 1972 г. было признано, что экологическое состояние природной среды в промышленных странах стало угрожать не только здоровью населения, но и самому существованию человечества. Решение этих проблем, возникающих в связи с катастрофическим ухудшением окружающей природной среды, занимает сейчас центральное место при выработке стратегии экологически устойчивого социально-экономического развития промышленно развитых стран. В последние годы в круг фундаментальных исследований проблем экологии территорий широко вовлечены космические методы контроля состояния экосистем.

Появление глобальной компьютерной сети Интернет и разработка передовых  информационных технологий открыли  новый этап развития космического экологического мониторинга. Особенностью нового этапа является широкое использование телекоммуникационной инфраструктуры, а также гипертекстовых и интерактивных информационных технологий, которые чрезвычайно перспективны в дистанционном мониторинге состояния окружающей среды. Актуальной является также проблема интегрирования национальных информационных ресурсов по окружающей среде, создание региональных баз данных и расширение электронных коллекций по результатам космического экологического мониторинга. Развитие технологий наблюдения из космоса, создание инфраструктур спутникового экологического мониторинга регионов наряду с разработкой экологической системы контроля в реальном масштабе времени призваны сыграть ключевую роль в обеспечении безопасности окружающей среды и устойчивого развития экономики стран.

В связи с этим создаются  Центры космического мониторинга (ЦКМ), которые осуществляют оперативный  контроль состояния окружающей среды  и природных ресурсов, создают  многоуровневые информационные системы  пространственно-временного мониторинга состояния окружающей среды, включающие технические и программные средства сбора, обработки, анализа и хранения спутниковой информации.

Во всем мире исследования Земли из космоса приобретают  всеобъемлющий характер. Наиболее информативным методом для решения задач дистанционного исследования поверхности Земли из космоса является использование и тематический анализ изображений, полученных приборными комплексами различных частотных диапазонов, установленных на космических аппаратах. Целый ряд спутников, оснащенных приборами дистанционного зондирования (радиолокаторами, скаттерометрами, радиометрами и оптической техникой), выведены на орбиту специально для получения разносторонней геофизической информации, необходимой для оценки состояния окружающей среды и для природо-ресурсных исследований.

 

2.3 Фотосъемки

 

     Фотографические  снимки поверхности Земли получают  с пилотируемых кораблей и  орбитальных станций или с  автоматических спутников. Отличительной  чертой КС является высокая  степень обзорности, охват одним снимком больших площадей поверхности. В зависимости от типа применяемой аппаратуры и фотопленок, фотографирование может производиться во всем видимом диапазоне электромагнитного спектра, в отдельных его зонах, а также в ближнем ИК (инфракрасном) диапазоне.

 

     Масштабы  съемки зависят от двух важнейших  параметров: высоты съемки и фокусного  расстояния объектива. Космические  фотоаппараты в зависимости от  наклона оптической оси позволяют  получать плановые и перспективные  снимки земной поверхности.

 

     В настоящее  время используется фотоаппаратура  с высоким разрешением, позволяющая  получать КС с перекрытием  60% и более. Спектральный диапазон  фотографирования охватывает видимую  часть ближней инфракрасной зоны (до 0,86 мкм).

 

     Известные недостатки фотографического метода связаны с необходимостью возвращения пленки на Землю и ограниченным ее запасом на борту. Однако фотографическая съемка — в настоящее время самый информативный вид съемки из космического пространства. Оптимальный размер отпечатка 18х18 см, который, как показывает опыт, согласуется с физиологией человеческого зрения, позволяя видеть все изображение одновременно.

 

     Для удобства  пользования из отдельных КС, имеющих перекрытия, монтируются  фотосхемы (фотомозаики) или фотокарты с топографической привязкой опорных точек с точностью 0,1 мм и точнее. Для монтажа фотосхем используются только плановые КС.

 

     Для приведения  разномасштабного, обычно перспективного  КС к плановому используется  специальный процесс, называемый трансформированием. Трансформированные КС с успехом используются для составления космофотосхем и космофотокарт и обычно легко привязываются к географической сетке координат.

 

2.4 Сканерные съемки

 

     В настоящее  время для съемок из космоса  наиболее часто используются многоспектральные оптико-механические системы — сканеры, установленные на ИСЗ различного назначения. При помощи сканеров формируются изображения, состоящие из множества отдельных, последовательно получаемых элементов. Термин «сканирование» обозначает развертку изображения при помощи сканирующего элемента (качающегося или вращающегося зеркала), поэлементно просматривающего местность поперек движения носителя и посылающего лучистый поток в объектив и далее на точечный датчик, преобразующий световой сигнал в электрический. Этот электрический сигнал поступает на приемные станции по каналам связи. Изображение местности получают непрерывно на ленте, составленной из полос — сканов, сложенных отдельными элементами — пикселами. Сканерные изображения можно получить во всех спектральных диапазонах, но особенно эффективным является видимый и ИК-диапазоны. При съемке земной поверхности с помощью сканирующих систем формируется изображение, каждому элементу которого соответствует яркость излучения участка, находящегося в пределах мгновенного поля зрения. Сканерное изображение — упорядоченный пакет яркостных данных, переданных по радиоканалам на Землю, которые фиксируются на магнитную ленту (в цифровом виде) и затем могут быть преобразованы в кадровую форму. Важнейшей характеристикой сканера являются угол сканирования (обзора) и мгновенный угол зрения, от величины которого зависят ширина снимаемой полосы и разрешение. В зависимости от величины этих углов сканеры делят на точные и обзорные. У точных сканеров угол сканирования уменьшают до ±5°, а у обзорных увеличивают до ±50°. Величина разрешения при этом обратно пропорциональна ширине снимаемой полосы.

 

     Хорошо  зарекомендовал себя сканер нового  поколения, названный «тематическим  картографом», которым были оснащены американские ИСЗ Landsat 5 и Landsat 7. Сканер типа «тематический картограф» работает в семи диапазонах с разрешением 30 м в видимом диапазоне спектра и 120 м в ИК-диапазоне. Этот сканер дает большой поток информации, обработка которой требует большего времени; в связи с чем замедляется скорость передачи изображения (число пикселов на снимках достигает более 36 млн. на каждом из каналов). Сканирующие устройства могут быть использованы не только для получения изображений Земли, но и для измерения радиации — сканирующие радиометры, и излучения — сканирующие спектрометры.

 

2.5 Радарные съемки

 

     Радиолокационная (РЛ) или радарная съемка —  важнейший вид дистанционных  исследований. Используется в условиях, когда непосредственное наблюдение  поверхности планет затруднено различными природными условиями: плотной облачностью, туманом и т.п. Она может проводиться в темное время суток, поскольку является активной. Для радарной съемки обычно используются радиолокаторы бокового обзора (ЛБО), установленные на самолетах и ИСЗ. С помощью ЛБО радиолокационная съемка осуществляется в радиодиапазоне электромагнитного спектра. Сущность съемки заключается в посылке радиосигнала, отражающегося по нормали от изучаемого объекта и фиксируемого на приемнике, установленном на борту носителя. Радиосигнал вырабатывается специальным генератором. Время возвращения его в приемник зависит от расстояния до изучаемого объекта. Этот принцип работы радиолокатора, фиксирующего различное время прохождения зондирующего импульса до объекта и обратно, используется для получения РЛ-снимков. Изображение формируется бегущим по строке световым пятном. Чем дальше объект, тем больше времени надо на прохождение отражаемого сигнала до его фиксации электронно-лучевой трубкой, совмещенной со специальной кинокамерой.

 

     При дешифрировании  радарных снимков следует учитывать  тон изображения и его текстуру. Тоновые неоднородности РЛ-снимка  зависят от литологических особенностей  пород, размера их зернистости,  устойчивости процессам выветривания. Тоновые неоднородности могут варьировать от черного до светлого цвета. Опыт работы с РЛ-снимками показал, что черный тон соответствует гладким поверхностям, где, как правило, происходит почти полное отражение посланного радиосигнала. Крупные реки всегда имеют черный тон. Текстурные неоднородности РЛ-изображения зависят от степени расчлененности рельефа и могут быть тонкосетчатыми, полосчатыми, массивными и др. Полосчатая текстура РЛ-изображения, например, характерна для горных районов, сложенных часто чередующимися слоями осадочных или метаморфических пород, массивная — для районов развития интрузивных образований. Особенно хорошо получается на РЛ-снимках гидросеть. Она дешифрируется лучше, чем на фотоснимках. Высокое разрешение РЛ-съемки в районах, покрытых густой растительностью, открывает широкие перспективы ее использования.

 

     Радарные  системы бокового обзора с  конца 70-х годов стали устанавливать  на ИСЗ. Так, например, первый  радиолокатор был установлен  на американском спутнике "Сисат", предназначенном для изучения динамики океанических процессов. Позднее был сконструирован радар, испытанный во время полетов космического корабля "Шаттл". Информация, полученная с помощью этого радара, представляется в виде черно-белых и ложноцветных синтезированных фото-, телеизображений или записей на магнитную ленту. Разрешающая способность 40 м. Информация поддается числовой и аналоговой обработке, такой же, что и сканерные снимки системы Landsat. Это в значительной мере способствует получению высоких результатов дешифрирования. Во многих случаях РЛ-снимки оказываются геологически более информативными, чем снимки спутников Landsat или других оптических сенсоров. Наилучший результат достигается и при комплексном дешифрировании материалов того и другого видов. РЛ-снимки успешно используются для изучения трудно- или недоступных территорий Земли — пустынь и областей, расположенных в высоких широтах, а также поверхность других планет.

 

     Классичесими  уже стали результаты картирования  поверхности Венеры — планеты,  покрытой мощным облачным слоем. Совершенствование РЛ-аппаратуры должно повлечь за собой дальнейшее повышение роли радиолокации в дистанционных исследованиях Земли, особенно при изучении ее геологического строения.

 

2.6 Тепловые съемки

 

     Инфракрасная (ИК), или тепловая, съемка основана на выявлении тепловых аномалий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением. Она широко применяется в геологии. Температурные неоднородности поверхности Земли возникают в результате неодинакового нагрева различных ее участков. Инфракрасный диапазон спектра электромагнитных колебаний условно делится на три части (в мкм):

ближний (0,74—1,35)

средний (1,35—3,50)

дальний (3,50—1000)

     Солнечное  (внешнее) и эндогенное (внутреннее) тепло нагревает геологические объекты по-разному в зависимости от литологических свойств пород, тепловой инерции, влажности, альбедо и многих других причин. ИК-излучение, проходя через атмосферу, избирательно поглощается, в связи с чем тепловую съемку можно вести только в зоне расположения так называемых "окон прозрачности" — местах пропускания ИК-лучей. Опытным путем выделено четыре основных окна прозрачности (в мкм): 0,74—2,40; 3,40—4,20; 8,0—13,0; 30,0—80,0. Некоторые исследователи выделяют большее число окон прозрачности. в первом окне (до 0,84 мкм) используется отраженное солнечное излучение. Здесь можно применять специальные фотопленки и работать с красным фильтром. Съемка в этом диапазоне называется ИК-фотосъемкой.

Информация о работе Дистанционный мониторинг