Автор: Пользователь скрыл имя, 22 Ноября 2015 в 21:05, курсовая работа
Как и любые другие технические устройства, компьютеры имеют свои стандартные поломки. Имеется в виду те неисправности, которые чаще всего появляются с течением времени. Даже опытный пользователь не застрахован от ошибок в установлении неисправности, а тем более, в установлении её причины. И, особенно, если неисправностей сразу несколько. Часто самостоятельные попытки заменить вышедшую из строя деталь компьютера или провести более сложный его ремонт заканчиваются очень плачевно - перестают работать многие программы и т д.
Целью данного курсового проекта является разработка методики проведения технического обслуживания системных блоков.
Введение 5
1. Назначение, характеристики и принцип работы системы охлаждения ПК 6
1.1. Системы охлаждения компьютера 6
1.2. Система воздушного охлаждения, основные параметры, конструкции и структурные схемы 6
1.3. Системы жидкостного охлаждения основные параметры, конструкции и структурные схемы 8
1.4. Фреоновая система охлаждения основные параметры, конструкции и структурные схемы 17
2. Техническое обслуживание, поиск и устранение неисправностей системы охлаждения 22
2.1. Технология обеспечения надежности системы охлаждения 22
2.2. Тестирование системы охлаждения 23
2.3. Основные неисправности систем охлаждения 25
3. Техника безопасности 29
4. Экономические расчеты 32
4.1. Расчет численности персонала, занятого при проведении технического обслуживания систем охлаждения ПК 32
4.2. Расчет времени безотказной работы системного блока ПК 32
4.3. Расчет времени безотказной работы систем охлаждения ПК 33
Заключение 34
Список используемых источников 35
Приложение А Алгоритм поиска неисправностей системы воздушного охлаждения 36
Приложение Б Алгоритм поиска неисправностей системы жидкостного охлаждения 37
Приложение В Алгоритм поиска неисправностей системы фреонового охлаждения 38
Содержание
Охлаждение компьютера необходимо для отвода тепла от нагретого компонента и его рассеивания. Обычный воздушный кулер снабжен монолитным радиатором, который выполняет обе данные функции.
В СВО каждая часть выполняет свою функцию. Водоблок осуществляет теплосъем, а другая часть рассеивает тепловую энергию. Схема соединения компонентов СВО представлена на рисунке 2.
Водоблоки могут включаться в контур параллельно и последовательно. Первый вариант предпочтительнее при наличии одинаковых теплосъемников. Можно эти варианты скомбинировать и получить параллельно-последовательное подключение, но наиболее правильным будет соединение водоблоков один за другим.
Отвод тепла происходит по такой схеме: жидкость из резервуара подводится к помпе, а затем перекачивается дальше к узлам, которые охлаждают компоненты ПК.
Причиной такого подключения является незначительный прогрев воды после прохождения первого водоблока и эффективный отвод тепла от чипсета, GPU, CPU. Прогретая жидкость попадает в радиатор и там охлаждается. Затем она снова попадает в резервуар, и начинается новый цикл.
По конструктивным особенностям СВО можно разделить на два типа:
СВО с помпой.
Принцип ее действия эффективность и прост. Жидкость (обычно дистиллированная вода) проходит через радиаторы охлаждаемых устройств.
Все компоненты конструкции соединяются между собой гибкими трубками (диаметр 6-12 мм). Жидкость, проходя через радиатор процессора и других устройств, забирает их тепло, а затем по трубкам попадает в радиатор теплообменника, где охлаждается сама. Система замкнутая, и жидкость в ней постоянно циркулирует. Схема замкнутой СВО представлена на рисунке 3.
СВО без помпы.
Есть системы жидкостного охлаждения, не использующие помпу. В них используется принцип испарителя и создается направленное давление, вызывающее движение охлаждающего вещества. В качестве хладагентов применяются жидкости с низкой точкой кипения. Система СВО без помпы представлена на рисунке 4.
Изначально радиатор и магистрали полностью заполнены жидкостью. Когда температура радиатора процессора становится выше определенного значения, то жидкость превращается в пар. Процесс превращения жидкости в пар поглощает тепловую энергию и повышает эффективность охлаждения. Горячим паром создается давление. Пар, через специальный односторонний клапан, может выходить только в одну сторону – в радиатор теплообменника-конденсатора. Там пар вытесняет холодную жидкость в направлении радиатора процессора, и, остывая, превращается снова в жидкость. Так жидкость-пар циркулирует в замкнутой системе трубопровода, пока температура радиатора высокая. Такая система получается очень компактной.
Компоненты СВО.
В системах водяного охлаждения используется определенный набор компонентов, обязательных и необязательных.
Обязательные компоненты СВО:
Необязательными компонентами СВО являются: термодатчики, резервуар, сливные краны, контролеры помпы и вентиляторов, второстепенные ватерблоки, индикаторы и измерители (расхода, температуры, давления), водные смеси, фильтры, бэкплейты.
Ватерблок - теплообменник, передающий тепло от нагревшегося элемента (процессора, видео чипа и др.) воде. Он состоит из медного основания и металлической крышки с набором креплений. Ватерблок представлен на рисунке 5.
Основные типы ватерблоков: процессорные, для видеокарт, на системный чип (северный мост). Ватерблоки для видеокарт могут быть двух типов: закрывающие только графический чип (рисунок 6) и закрывающие все нагревающиеся элементы – фулкавер (рисунок 7).
Для увеличения площади теплопередачи применяется микроканальная и микроигольчатая структура. Ватерблоки делают без сложной внутренней структуры, если производительность не столь критична.
Радиатор.
В СВО радиатором называют водно-воздушный теплообменник, передающий воздуху тепло от воды в ватерблоке. Есть два подтипа радиаторов СВО:
Безвентиляторные можно встретить довольно редко потому, что данный тип радиаторов обладает более низкой эффективностью. Такие радиаторы занимают много места и их сложно поместить даже в модифицированном корпусе.
Активные радиаторы более распространены в системах водяного охлаждения из-за лучшей эффективности. Если использовать тихие или бесшумные вентиляторы, то можно добиться тихой или бесшумной работы СВО. Эти радиаторы могут быть самого разного размера, но в основном их делают кратными к размеру 120 мм или 140мм вентилятора.
Помпа – электрический насос, отвечает за циркуляцию воды в контуре СВО. Помпы могут работать от 220 вольт или от 12 вольт. Когда в продаже было мало специализированных компонентов для СВО, то использовали аквариумные помпы, работающие от 220 вольт. Это создавало некоторые трудности, из-за необходимости включать помпу синхронно с компьютером. Для этого применяли реле, включающее помпу автоматически при старте компьютера. Сейчас есть специализированные помпы, обладающие компактными размерами и хорошей производительностью, работающие от 12 вольт, представленная на рисунке 8.
Информация о работе Техническое обслуживание, поиск и устранение неисправностей системы охлаждения