Создание базы данных экспериментов с плазменным кристаллом

Автор: Пользователь скрыл имя, 16 Июня 2014 в 13:58, магистерская работа

Краткое описание

Несмотря на широкую распространенность в природе и исключительно важную роль в самых различных областях науки и техники: от источников света до термоядерного синтеза и нанотехнологий – плазма, исследования которой продолжаются уже второе столетие, остается до конца не понятым объектом. Даже для простейших случаев газового разряда в инертных газах теоретики не могут предложить четкого алгоритма расчета внутренних параметров плазмы и ее эмиссионных характеристик на основе произвольно устанавливаемых экспериментатором факторов (размер среды, напряжение питания, род и давление газа). Тем не менее, не прекращаются попытки построить модели значительно более сложных экзотических плазменных сред. Так в 70-х и начале 80-х годов прошлого века появляются работы, в которых на основе классической статистической механики с использованием численных методов решения соответствующих уравнений методом Монте-Карло исследуются свойства однокомпонентной полностью ионизованной плазмы гелия при температуре около 108 К и плотности вещества 1029 cм-3.

Файлы: 1 файл

Диплом Соколов АВ.doc

— 1,009.50 Кб (Скачать)

  • Измерение постоянного напряжения с высоковольтным делителем напряжения ДНВ

Предел

Класс точности

200 мВ, 2, 20, 200 В

0,04/0,4


  • Измерение среднего квадратического значения переменного напряжения (пределы: 20 мВ, 2, 20, 200, 2000 В)

Диапазон частот

Класс точности

20-40 Гц

0,1/1

40 Гц – 10 КГц

0,1/0,6

10-20 КГц

0,1/1

20-50 КГц

0,15/5

50-100 КГц (кроме 2000 В)

0,4/10


  • Измерение среднего квадратического значения переменного напряжения с делителем переменного напряжения ДПН (пределы: 20 мВ, 2, 20, 200, 2000 В)

Диапазон частот

Класс точности

20-40 Гц

0,1/1

40 Гц – 1 КГц

0,1/0,6


  • Измерение среднего квадратического значения переменного напряжения синусоидальной формы с ВЧ пробником

Диапазон частот

Класс точности

50 КГц – 50 МГц

0,6/10

50-300 МГц

3/10

300- 800 МГц

2/20

800-1000 МГц

2/30


  • Измерение силы постоянного тока

Предел

Класс точности

200 мкА, 2, 20, 200, 2000 мА

0,02/0,2


  • Измерение среднего квадратического значения силы переменного тока (пределы: 20 мкА, 2, 20, 200, 2000 мА)

Диапазон частот

Класс точности

40 Гц – 10 КГц

0,1/1

10-20 КГц (кроме 2000 мА)

0,1/2


  • Измерение электрического сопротивления

Предел

Класс точности

200 Ом, 2, 20, 200, 2000 кОм

0,05/0,15

20 Мом

0,1/0,5


 

 

2 Выбор технологий

2.1 Критерии выбора СУБД при создании информационных систем

Выбор системы управления баз данных (СУБД) представляет собой сложную многопараметрическую задачу и является одним из важных этапов при разработке приложений баз данных. Выбранный программный продукт должен удовлетворять как текущим, так и будущим потребностям предприятия, при этом следует учитывать финансовые затраты на приобретение необходимого оборудования, самой системы, разработку необходимого программного обеспечения на ее основе, а также обучение персонала. Кроме того, необходимо убедиться, что новая СУБД способна принести реальные выгоды.

Очевидно, наиболее простой подход при выборе СУБД основан на оценке того, в какой мере существующие системы удовлетворяют основным требованиям создаваемого проекта информационной системы. Более сложным и дорогостоящим вариантом является создание испытательного проекта на основе нескольких СУБД и последующий выбор наиболее подходящего из кандидатов. Но и в этом случае необходимо ограничивать круг возможных систем, опираясь на некие критерии отбора. Вообще говоря, перечень требований к СУБД, используемых при анализе той или иной информационной системы, может изменяться в зависимости от поставленных целей. Тем не менее, можно выделить несколько групп критериев:

  • Моделирование данных
  • Особенности архитектуры и функциональные возможности
  • Контроль работы системы
  • Особенности разработки приложений
  • Производительность
  • Надежность
  • Требования к рабочей среде
  • Смешанные критерии

Рассмотрим каждую из этих групп в отдельности.

2.1.1 Моделирование данных.

  • Используемая модель данных. Существует множество моделей данных; самые распространенные – иерархическая, сетевая, реляционная, объектно-реляционная и объектная. Вопрос об использовании той или иной модели должен решаться на начальном этапе проектирования информационной системы.
  • Триггеры и хранимые процедуры. Триггер – программа базы данных, вызываемая всякий раз при вставке, изменении или удалении строки таблицы. Триггеры обеспечивают проверку любых изменений на корректность, прежде чем эти изменения будут приняты. Хранимая процедура – программа, которая хранится на сервере и может вызываться клиентом. Поскольку хранимые процедуры выполняются непосредственно на сервере базы данных, обеспечивается более высокое быстродействие, нежели при выполнении тех же операций средствами клиента БД. В различных программных продуктах для реализации триггеров и хранимых процедур используются различные инструменты.
  • Средства поиска. Некоторые современные системы имеют встроенные дополнительные средства контекстного поиска.
  • Предусмотренные типы данных. Здесь следует учесть два фактически независимых критерия: базовые или основные типы данных, заложенные в систему, и наличие возможности расширения типов. В то время как отклонения базовых наборов типов данных у современных систем от некоего стандартного, обычно, невелики, механизмы расширения типов данных в системах того или иного производителя существенно различаются.
  • Реализация языка запросов. Все современные системы совместимы со стандартным языком доступа к данным SQL-92, однако многие из них реализуют те или иные расширения данного стандарта.

2.1.2 Особенности архитектуры и функциональные возможности.

  • Мобильность. Мобильность – это независимость системы от среды, в которой она работает. Средой в данном случае является как аппаратура, так и программное обеспечение (операционная система).
  • Масштабируемость. При выборе СУБД необходимо учитывать, сможет ли данная система соответствовать росту информационной системы, причем рост может проявляться в увеличении числа пользователей, объема хранимых данных и объеме обрабатываемой информации.
  • Распределенность. Основной причиной применения информационных систем на основе баз данных является стремление объединить взгляды на всю информацию организации. Самый простой и надежный подход - централизация хранения и обработки данных на одном сервере. К сожалению, это не всегда возможно и приходится применять распределенные базы данных. Различные системы имеют разные возможности управления распределенными базами данных.
  • Сетевые возможности. Многие системы позволяют использовать широкий диапазон сетевых протоколов и служб для работы и администрирования.

2.1.3 Контроль работы системы

  • Контроль использования памяти компьютера. Система может иметь возможность управления использованием как оперативной памяти, так и дискового пространства. Во втором случае это может выражаться, например, в сжатии баз данных, или удалении избыточных файлов.
  • Автонастройка. Многие современные системы включают в себя возможности самоконфигурирования, которые, как правило, опираются на результаты работы сервисов самодиагностики производительности. Данная возможность позволяет выявить слабые места конфигурации системы и автоматически настроить ее на максимальную производительность.

2.1.4 Особенности разработки приложений.

  • Многие производители СУБД выпускают также средства разработки приложений для своих систем. Как правило, эти средства позволяют наилучшим образом реализовать все возможности сервера, поэтому при анализе СУБД стоит рассмотреть также и возможности средств разработки приложений.
  • Средства проектирования. Некоторые системы имеют средства автоматического проектирования, как баз данных, так и прикладных программ. Средства проектирования различных производителей могут существенно различаться.
  • Многоязыковая поддержка. Поддержка большого количества национальных языков расширяет область применения системы и приложений, построенных на ее основе.
  • Возможности разработки веб-приложений. При разработке различных приложений зачастую возникает необходимость использовать возможности среды Интернет. Средства разработки некоторых производителей имеют большой набор инструментов для построения веб-приложений.
  • Поддерживаемые языки программирования. Широкий спектр используемых языков программирования повышает доступность системы для разработчиков, а также может существенно повлиять на быстродействие и функциональность создаваемых приложений.

2.1.5 Производительность.

  • Рейтинг TPC (Transactions per Cent). Для тестирования производительности применяются различные средства, и существует множество тестовых рейтингов. Одним из самых популярных и объективных является TPC-анализ производительности систем. Фактически TPC анализ рассматривает композицию СУБД и аппаратуры, на которой эта СУБД работает. Показатель TPC – это отношение количества запросов обрабатываемых за некий промежуток времени к стоимости всей системы.
  • Возможности параллельной архитектуры. Для обеспечения параллельной обработки данных существует, как минимум, два подхода: распараллеливание обработки последовательности запросов на несколько процессоров, либо использование нескольких компьютеров-клиентов, работающих с одной БД, которые объединяют в так называемый параллельный сервер.
  • Возможности оптимизирования запросов. При использовании непроцедурных языков запросов их выполнение может быть неоптимальным. Поэтому необходимо произвести процесс оптимизации запросов, т.е. выбрать такой способ выполнения, когда по начальному представлению запроса путем его синтаксических и семантических преобразований вырабатывается процедурный план выполнения запроса, наиболее оптимальный при существующих в базе данных управляющих структурах.

2.1.6 Надежность.

Понятие надежности системы имеет много смыслов – это и сохранность информации независящая от любых сбоев, и безотказность работы системы в любых условиях, и обеспечение защиты данных от несанкционированного доступа.

  • Восстановление после сбоев. При возникновении программных или аппаратных сбоев целостность, да и работоспособность всей системы может быть нарушена. От того, как эффективно спланирован механизм восстановления после сбоев, зависит жизнеспособность системы.
  • Резервное копирование. В результате аппаратного сбоя может быть частично поврежден или выведен из строя носитель информации и тогда восстановление данных невозможно, если не было предусмотрено резервное копирование базы данных, или ее части. Резервное копирование спасает и в ситуациях, когда происходит логический сбой системы, например при ошибочном удалении таблиц. Существует множество механизмов резервирования данных (хранение одной или более копий всей базы данных, хранение копии ее части, копирование логической структуры и т.д.). Зачастую в систему закладывается возможность использования нескольких таких механизмов.
  • Откат изменений. При выполнении транзакции применяется простое правило – либо транзакция выполняется полностью, либо не выполняется вообще. Это означает, что в случае сбоев, все результаты незаконченных транзакций должны быть аннулированы. Механизм отката может иметь различное быстродействие и эффективность.
  • Многоуровневая система защиты. Информационная система организации почти всегда включает в себя секретную информацию, поэтому для предотвращения несанкционированного доступа используется служба идентификации пользователей. Уровень защиты может быть различным. Кроме непосредственной идентификации пользователей при входе в систему может использоваться также механизм шифрования данных при передаче по линиям связи.

2.1.7 Требования к рабочей среде.

  • Поддерживаемые аппаратные платформы.
  • Минимальные требования к оборудованию. Максимальный размер адресуемой памяти. Поскольку почти все современные системы используют свою файловую систему, немаловажным фактором является то, какой максимальный объем физической памяти они могут использовать.
  • Операционные системы, под управлением которых способна работать СУБД.

2.1.8 Смешанные критерии.

  • Качество и полнота документации. К сожалению, не все системы имеют полную и подробную документацию.
  • Локализованность (русификация). Возможность использования национальных языков не во всех системах реализована полностью.
  • Модель формирования стоимости. Как правило, производители СУБД используют определенные модели формирования стоимости. Например, стоимость одного и того же продукта может существенно изменяться в зависимости от того, сколько пользователей будет с ним работать.
  • Стабильность производителя.
  • Распространенность СУБД.

Информация о работе Создание базы данных экспериментов с плазменным кристаллом