Шпаргалка по "Системное програмное обеспечение"

Автор: Пользователь скрыл имя, 11 Марта 2012 в 17:48, шпаргалка

Краткое описание

Работа содержит ответы на 38 экзаменационных вопросов по дисциплине "Системное програмное обеспечение"

Оглавление

1. Виды программного обеспечения. Классификации.
2. Компоненты операционной системы.
3. Обзор операционных систем. Краткая история ОС UNIX.
4. Стандарт POSIX. Объекты стандартизации.
5. Ядро ОС. Назначение, функции.
6. Работа с файлами и директориями. Права пользователей.
7. Компиляторы. Назначение. Принципы работы.
8. Понятие процесса в UNIX. Контекст процесса.
9. Диаграмма состояний процесса.
10. Взаимодействующие процессы. Причины кооперации.
11. Параметры функции main() в языке C. Переменные среды окружения и аргументы командной строки.
12. Средства связи между процессами. Характеристики. Критерии надежности средств связи.
13. Способы адресации при использовании средств связи.
14. Буферизация.
15. Модели передачи данных по каналам связи. Организация взаимодействия процессов через pipe.
16. Модели передачи данных по каналам связи. Организация взаимодействия процессов через FIFO.
17. Организация работы с разделяемой памятью в UNIX.
18. Понятие нитей исполнения.
19. Преимущества и недостатки потокового обмена данными.
20. Дескрипторы System V IPC.
21. Синхронизация процессов и нитей исполнения.
22. Семафоры в UNIX.
23. Создание массива семафоров или доступ к уже существующему.
24. Сообщения, как средства связи и средства синхронизации.
25. Операции над очередями сообщений.
26. Мультиплексирование сообщений.
27. Организация файловой системы в UNIX.
28. Разделы носителя информации в UNIX.
29. Логическая структура файловой системы и типы файлов в UNIX.
30. Понятие индексного узла.
31. Организация директорий в UNIX.
32. Системные вызовы для работы с файлами.
33. Понятие о файлах, отображаемых в память.
34. Организация ввода-вывода в UNIX.
35. Файлы устройств.
36. Монтирование файловых систем.
37. Сигналы в UNIX.
38. Понятие о надежности сигналов.

Файлы: 1 файл

ответы СПО.doc

— 368.50 Кб (Скачать)

 

15. Модели передачи данных по каналам связи. Организация взаимодействия процессов через pipe

Наиболее простым способом для передачи информации с помощью потоковой модели между различными процессами или даже внутри одного процесса в операционной системе UNIX является pipe (канал, труба, конвейер).

Важное отличие pip’а от файла заключается в том, что прочитанная информация немедленно удаляется из него и не может быть прочитана повторно.

Pipe можно представить себе в виде трубы ограниченной емкости, расположенной внутри адресного пространства операционной системы, доступ к входному и выходному отверстию которой осуществляется с помощью системных вызовов. В действительности pipe представляет собой область памяти, недоступную пользовательским процессам напрямую, зачастую организованную в виде кольцевого буфера (хотя существуют и другие виды организации). По буферу при операциях чтения и записи перемещаются два указателя, соответствующие входному и выходному потокам. При этом выходной указатель никогда не может перегнать входной и наоборот. Для создания нового экземпляра такого кольцевого буфера внутри операционной системы используется системный вызов pipe().

Системный вызов pipe

Прототип системного вызова

#include <unistd.h>

int pipe(int *fd);

Описание системного вызова

Системный вызов pipe предназначен для создания pip'а внутри операционной системы.

Параметр fd является указателем на массив из двух целых переменных. При нормальном завершении вызова в первый элемент массива – fd[0] – будет занесен файловый дескриптор, соответствующий выходному потоку данных pip’а и позволяющий выполнять только операцию чтения, а во второй элемент массива – fd[1] – будет занесен файловый дескриптор, соответствующий входному потоку данных и позволяющий выполнять только операцию записи.

Возвращаемые значения

Системный вызов возвращает значение 0 при нормальном завершении и значение -1 при возникновении ошибок.

В процессе работы системный вызов организует выделение области памяти под буфер и указатели и заносит информацию, соответствующую входному и выходному потокам данных, в два элемента таблицы открытых файлов, связывая тем самым с каждым pip’ом два файловых дескриптора. Для одного из них разрешена только операция чтения из pip’а, а для другого – только операция записи в pipe. Для выполнения этих операций мы можем использовать те же самые системные вызовы read() и write(), что и при работе с файлами. Естественно, по окончании использования входного или/и выходного потока данных, нужно закрыть соответствующий поток с помощью системного вызова close() для освобождения системных ресурсов. Необходимо отметить, что, когда все процессы, использующие pipe, закрывают все ассоциированные с ним файловые дескрипторы, операционная система ликвидирует pipe. Таким образом, время существования pip’а в системе не может превышать время жизни процессов, работающих с ним.

 

16. Модели передачи данных по каналам связи. Организация взаимодействия процессов через FIFO

Как мы выяснили, доступ к информации о расположении pip'а в операционной системе и его состоянии может быть осуществлен только через таблицу открытых файлов процесса, создавшего pipe, и через унаследованные от него таблицы открытых файлов процессов-потомков. Поэтому изложенный выше механизм обмена информацией через pipe справедлив лишь для родственных процессов, имеющих общего прародителя, инициировавшего системный вызов pipe(), или для таких процессов и самого прародителя и не может использоваться для потокового общения с другими процессами. В операционной системе UNIX существует возможность использования pip'а для взаимодействия других процессов, но ее реализация достаточно сложна и лежит далеко за пределами наших занятий.

Для организации потокового взаимодействия любых процессов в операционной системе UNIX применяется средство связи, получившее название FIFO (от First Input First Output) или именованный pipe. FIFO во всем подобен pip’у, за одним исключением: данные о расположении FIFO в адресном пространстве ядра и его состоянии процессы могут получать не через родственные связи, а через файловую систему. Для этого при создании именованного pip’а на диске заводится файл специального типа, обращаясь к которому процессы могут получить интересующую их информацию. Для создания FIFO используется системный вызов mknod() или существующая в некоторых версиях UNIX функция mkfifo().

Следует отметить, что при их работе не происходит действительного выделения области адресного пространства операционной системы под именованный pipe, а только заводится файл-метка, существование которой позволяет осуществить реальную организацию FIFO в памяти при его открытии с помощью уже известного нам ситемного вызова open().

После открытия именованный pipe ведет себя точно так же, как и неименованный. Для дальнейшей работы с ним применяются системные вызовы read(), write() и close(). Время существования FIFO в адресном пространстве ядра операционной системы, как и в случае с pip’ом, не может превышать время жизни последнего из использовавших его процессов. Когда все процессы, работающие с FIFO, закрывают все файловые дескрипторы, ассоциированные с ним, система освобождает ресурсы, выделенные под FIFO. Вся непрочитанная информация теряется. В то же время файл-метка остается на диске и может использоваться для новой реальной организации FIFO в дальнейшем.

 

17. Организация работы с разделяемой памятью в UNIX

С точки зрения операционной системы, наименее семантически нагруженным средством System V IPC является разделяемая память (shared memory). Мы уже упоминали об этой категории средств связи на лекции. Для текущего семинара нам достаточно знать, что операционная система может позволить нескольким процессам совместно использовать некоторую область адресного пространства. Внутренние механизмы, позволяющие реализовать такое использование, будут подробно рассмотрены на лекции, посвященной сегментной, страничной и сегментно-страничной организации памяти.

Все средства связи System V IPC требуют предварительных инициализирующих действий (создания) для организации взаимодействия процессов.

Для создания области разделяемой памяти с определенным ключом или доступа по ключу к уже существующей области применяется системный вызов shmget(). Существует два варианта его использования для создания новой области разделяемой памяти.

Стандартный способ. В качестве значения ключа системному вызову поставляется значение, сформированное функцией ftok() для некоторого имени файла и номера экземпляра области разделяемой памяти. В качестве флагов поставляется комбинация прав доступа к создаваемому сегменту и флага IPC_CREAT. Если сегмент для данного ключа еще не существует, то система будет пытаться создать его с указанными правами доступа. Если же вдруг он уже существовал, то мы просто получим его дескриптор. Возможно добавление к этой комбинации флагов флага IPC_EXCL. Этот флаг гарантирует нормальное завершение системного вызова только в том случае, если сегмент действительно был создан (т. е. ранее он не существовал), если же сегмент существовал, то системный вызов завершится с ошибкой, и значение системной переменной errno, описанной в файле errno.h, будет установлено в EEXIST.

Нестандартный способ. В качестве значения ключа указывается специальное значение IPC_PRIVATE. Использование значения IPC_PRIVATE всегда приводит к попытке создания нового сегмента разделяемой памяти с заданными правами доступа и с ключом, который не совпадает со значением ключа ни одного из уже существующих сегментов и который не может быть получен с помощью функции ftok() ни при одной комбинации ее параметров. Наличие флагов IPC_CREAT и IPC_EXCL в этом случае игнорируется.

 

18. Понятие нитей исполнения

Рассмотренные выше аспекты логической реализации относятся к средствам связи, ориентированным на организацию взаимодействия различных процессов. Однако усилия, направленные на ускорение решения задач в рамках классических операционных систем, привели к появлению совершенно иных механизмов, к изменению самого понятия “процесс”.

В свое время внедрение идеи мультипрограммирования позволило повысить пропускную способность компьютерных систем, т.е. уменьшить среднее время ожидания результатов работы процессов. Но любой отдельно взятый процесс в мультипрограммной системе никогда не может быть выполнен быстрее, чем при выполнении в однопрограммном режиме на том же вычислительном комплексе. Тем не менее, если алгоритм решения задачи обладает определенным внутренним параллелизмом, мы могли бы ускорить его работу, организовав взаимодействие нескольких процессов. Рассмотрим следующий пример. Пусть у нас есть следующая программа на псевдоязыке программирования:

Ввести массив a

Ввести массив b

Ввести массив c

a = a + b 

c = a + c 

Вывести массив c

При выполнении такой программы в рамках одного процесса этот процесс четырежды будет блокироваться, ожидая окончания операций ввода-вывода. Но наш алгоритм обладает внутренним параллелизмом. Вычисление суммы массивов a + b можно было бы делать параллельно с ожиданием окончания операции ввода массива c.

Ввести массив a

Ожидание окончания операции ввода

Ввести массив b

Ожидание окончания операции ввода

Ввести массив с

Ожидание окончания операции ввода

a = a + b

c = a + c

Вывести массив с

Ожидание окончания операции вывода

Такое совмещение операций по времени можно было бы реализовать, используя два взаимодействующих процесса. Для простоты будем полагать, что средством коммуникации между ними служит разделяемая память. Тогда наши процессы могут выглядеть следующим образом:

Процесс 1

Процесс 2

Ввести массив a

Ожидание ввода

Ожидание окончания операции ввода

массивов a и b

Ввести массив b

Ожидание окончания операции ввода

Ввести массив с

Ожидание окончания операции ввода

a = a + b

c = a + c

Вывести массив с

Ожидание окончания операции вывода 

Казалось бы, мы предложили конкретный способ ускорения решения задачи. Однако в действительности дело обстоит не так просто. Второй процесс должен быть создан, оба процесса должны сказать операционной системе, что им необходима память, которую они могли бы разделить с другим процессом, и, наконец, нельзя забывать о переключении контекста. Поэтому реальное поведение процессов будет выглядеть примерно так.

Процесс 1 

Процесс 2

Создать процесс 2

Переключение контекста

Выделение общей памяти

Ожидание ввода a и b

Переключение контекста

Выделение общей памяти

Ввести массив a

Ожидание окончания операции ввода

Ввести массив b

Ожидание окончания операции ввода  

Ввести массив с

Ожидание окончания операции ввода  

Переключение контекста

a = a + b

Переключение контекста

c = a + c

Вывести массив с

Ожидание окончания операции вывода   

Как видим, мы можем не только не выиграть во времени решения задачи, но даже и проиграть, так как временные потери на создание процесса, выделение общей памяти и переключение контекста могут превысить выигрыш, полученный за счет совмещения операций.

Для того, чтобы реализовать нашу идею, введем новую абстракцию внутри понятия “процесс” – нить исполнения или просто нить (в англоязычной литературе используется термин thread). Нити процесса разделяют его программный код, глобальные переменные и системные ресурсы, но каждая нить имеет свой собственный программный счетчик, свое содержимое регистров и свой собственный стек. Теперь процесс представляется как совокупность взаимодействующих нитей и выделенных ему ресурсов. Процесс, содержащий всего одну нить исполнения, идентичен процессу в том смысле, который мы употребляли ранее. Для таких процессов мы в дальнейшем будем использовать термин “традиционный процесс”. Иногда нити называют облегченными процессами или мини-процессами, так как во многих отношениях они подобны традиционным процессам.  Нити, как и процессы, могут порождать нити-потомки, правда, только внутри своего процесса, и переходить из состояния в состояние. Состояния нитей аналогичны состояниям традиционных процессов. Из состояния рождение процесс приходит содержащим всего одну нить исполнения. Другие нити процесса будут являться потомками этой нити прародительницы. Мы можем считать, что процесс находится в состоянии готовность, если хотя бы одна из его нитей находится в состоянии готовность и ни одна из нитей не находится в состоянии исполнение. Мы можем считать, что процесс находится в состоянии исполнение, если одна из его нитей находится в состоянии исполнение. Процесс будет находиться в состоянии ожидание, если все его нити находятся в состоянии ожидание. Наконец, процесс находится в состоянии завершил исполнение, если все его нити находятся в состоянии завершили исполнение. Пока одна нить процесса заблокирована, другая нить того же процесса может выполняться. Нити разделяют процессор так же, как это делали традиционные процессы, в соответствии с рассмотренными алгоритмами планирования.

Поскольку нити одного процесса разделяют существенно больше ресурсов, чем различные процессы, то операции создания новой нити и переключения контекста между нитями одного процесса занимают существенно меньше времени, чем аналогичные операции для процессов в целом. Предложенная нами схема совмещения работы в терминах нитей одного процесса получает право на существование.

Информация о работе Шпаргалка по "Системное програмное обеспечение"