Автор: Пользователь скрыл имя, 04 Марта 2013 в 18:15, курсовая работа
Название языка CLIPS – аббревиатура от C Language Integrated Production System. Язык был разработан в центре космических исследований NASA
{NASA’s Johnson Space Center} в середине 1980-х годов и во многом сходен с языками , созданными на базе LIPS, в частности OPS5 и ART. Использование C в качестве языка реализации объясняется тем, что компилятор LISP не поддерживается частью распространенных платформ, а также сложностью интеграции LISP-кода в приложения, которые используют отличный от LIPS язык программирования.
А.1. Краткая история CLIPS 3
А.2. Правила и функции в CLIPS 3
А.3. Обектно-ориентированные средства в CLIPS 10
А.4. Задача «Правдолюбцы и лжецы» 15
А.5 Стиль программирования на языке CLIPS 66
CLIPS> (reset)
= => f-0 (initial-fact)
= => f-1 (world (tag 1) (scope truth) (context 0))
= => f-2 (statement (speaker A) (claim OR F A T B) (reason 0) (tag 1))
CLIPS> (run)
FIRE 1 unwrap-true: f-1, f-2
Assumption
F is a knight, so (OR F A T B) is true.
= => f-3 (claim (content OR F A T B) (reason 1) (scope truth) (context 0))
= => f-4 (claim (content T A) (reason 1) (scope truth) (context 0))
FIRE 2 left-or: f-1, f-3
= => f-5 (claim (content F A) (reason 1) (scope truth) (context 1))
<= = f-1 (world (tag 1) (scope truth) (context 0))
= => f-6 (world (tag1) (scope truth) (context 1))
FIRE 3 contra-truth-scope: f-6, f-4, f-5
Disjunct 1 is inconsistent with earlier truth context.
<= = = f-5 (claim (content F A) (reason 1) (scope truth) (context 1))
FIRE 4 right-or: f-6, f-3
= => f-7 (claim (content T B) (reason 1) (scope truth) (context 2))
<= = f-6 (world (tag 1) (scope truth) (context 1))
= => f-8 (world (tag 1) (scope truth) (context 2))
FIRE 5 consist-truth: f-8, f-2
Statement is consistent:
<= = f-8 (world (tag 1) (scope truth) (context 2))
= => f-9 (world (tag 1) (scope consist) (context 2))
FIRE 6 true-knight: f-9, f-7
B is a knight
<= = f-7 (claim (content T B) (reason 1) (scope truth) (context 2))
FIRE 7 true-knight: f-9, f-4
A is a knight
<= = f-4 (claim (content T A) (reason 1) (scope truth) (context 0))
CLIPS>
А.5. Обратное прослеживание и множество контекстов
Модифицируем программу таким образом, чтобы она могла справиться и с задачами этого класса в более сложной постановке. Речь идет о задачах, в которых несколько персонажей произносят реплики. Пример такого рода головоломки приведен ниже.
Р5. Встречаются два человека, А и В, которые заявляют следующее.
А: «Я говорю правду, либо В лжец».
В: «А говорит правду, либо я лжец».
К какой категории следует
Задача анализа высказываний нескольких персонажей потребует использования более сложной методики, которая получила наименование «обратное прослеживание на основе анализа зависимостей» (dependency-directed backtracking).
От программы потребуется
Чтобы смысл этих формулировок стал более понятным, рассмотрим следующий пример.
Р6. Встречаются два человека, А и В, которые заявляют следующее.
А: «Хотя бы один из нас говорит правду».
В: «Хотя бы один из нас лжец».
К какой категории следует
Высказывания персонажей представим в следующем виде:
А: T(A) v T(B)
B: F(A) v F(B)
Начнем с заявления персонажа В
T(B)=>F(A) v F(B)
И проанализируем левый операнд дизъюнкции. В результате будет сформирована корректная непротиворечивая интерпретация: В – правдолюбец, А – лжец.
Получив непротиворечивую интерпретацию высказывания персонажа В, перейдем к анализу высказывания персонажа А:
T(A)=> FALSE
Поскольку правдивость А противоречит сформированной ранее интерпретации высказывания персонажа В. Предположим, что А – лжец. Тогда:
F(A)=> -(T(A) v T(B))=> F(A) ^ F(B)=> FALSE.
Таким образом, оказывается, что это
предположение также не работает,
поскольку противоречит выбранной
ранее интерпретации
Но анализ высказывания персонажа В нельзя считать законченным, поскольку не был выполнен анализ правого операнда дизъюнкции
T(B)=> F(A) v F(B)
И не было проанализировано предположение, что В лжец. До тех пор, пока это не будет выполнено, мы не имеем права делать вывод, что высказывания в формулировке задачи противоречат друг другу.
Поэтому придется вернуться назад в ту точку процесса логического анализа, где было сделано предположение об истинности левого операнда в дизъюнкции, и проанализировать вместо него правый операнд F(B). При этом сразу же будет обнаружено противоречие между истинностью F(B) и ранее высказанным предположением о правдивости персонажа В, но, не вернувшись назад и не выполнив этот анализ, мы не смогли бы обнаружить это противоречие. Теперь остается проанализировать следствие из предположения, что В – лжец.
F(B)=> -(F(A) v F(B))=> T(A) ^ T(B)=> FALSE
Только теперь можно с чистой совестью утверждать, что не существует непротиворечивой интерпретации высказываний, приведенных в условии задачи. Предположение о правдивости персонажа В приводит к конфликту с высказыванием персонажа А, а предположение о лживости В противоречит его же словам.
Чтобы в системе, использующей правила в качестве основного программного компонента, реализовать откат (обратное прослеживание), нужно в первую очередь иметь возможность восстановить тот контекст, который существовал в момент, когда было сформулировано предположение, приведшее к не удовлетворяющему нас результату. Как было показано в главе 5, одно из достоинств продукционных систем, подобных CLIPS, состоит в том, что они способны выполнить такой откат, не сохраняя прежнего состояния процесса вычислений, что коренным образом отличает их от фундаментально рекурсивных языков программирования, таких как LISP и PROLOG. При возникновении необходимости выполнить откат продукционные системы последовательно отменяют в обратном порядке все операции, связанные с добавлением данных в рабочую память, которые были выполнены, начиная с точки возврата, в которую нужно вернуться, вплоть до текущего этапа вычислений. Но таким способом можно реализовать возврат, только предполагая, что в ходе выполнения операций, следующих за точкой возврата, из рабочей память не было удалено ничего существенного, а все действия, модифицирующие состояние рабочей памяти, носили исключительно аддитивный характер.
Примеры, подобные задаче
Р6, существенно усложняют жизнь,
поскольку для их решения программа
должна выполнять некоторые
Рассмотрим подробнее каждую из этих операций.
Начнем модификацию нашей программы с того, что в шаблон объекта world включим слот, в котором будет храниться идентификатор ранее покинутого «мира» (объекта), с которым данный объект конфликтует. Это нужно сделать по двум причинам.
Ниже будет показано, что для решения проблемы можно обойтись без реализации правила, упомянутого в п.2., хотя это и не так легко сделать, но соображения, высказанные в п.1., в любом случае остаются в силе.
;; Объект world представляет контекст,
;; сформированный определенными предположениями
;; о правдивости или лживости высказывания,
;; принадлежащего некоторому персонажу.
;; Объект имеет уникальный идентификатор в поле tag,
;; а смысл допущения – истинность или лживость –
;; фиксируется в поле scope.
;; Поле prior может содержать идентификатор
;; объекта world, обработанного перед тем,
;; как был создан данный объект, и с которым данный
;; объект может потенциально конфликтовать.
;; В поле context сохраняется текущий контекст
;; анализируемого операнда дизъюнкции.
(deftemplate world
(field tag (type INTEGER) (default 1))
(field scope (type SYMBOL) (default truth))
(field prior (type INTEGER) (default 0))
(field context (type INTEGER) (default 0)
)
Помимо модификации структуры объекта, для выполнения отката потребуется разработать правила для выполнения некоторых ключевых операций. Эти операции перечислены ниже вместе с ключевыми словами, ассоциированными с каждой из них.
Еще раз модифицируем
определение шаблона объекта wo
;; Объект world представляет контекст,
;; сформированный определенными предположениями
;; о правдивости или лживости высказывания,
;; принадлежащего некоторому персонажу.
;; Объект имеет уникальный идентификатор
;; в поле tag, который соответствует
;; тегу высказывания.
;; Смысл допущения – истинность или лживость –
;; фиксируется в поле scope.
;; Поле TASK содержит одно из перечисленных
;; ниже значений:
;; CHECK – анализ предположений о
;; правдивости или лживости высказывания;
;; CONTRA – анализ обнаруженного противоречия;
;; CLEAN – удаляет все утверждения, созданные
;; в противоречивом мире ;
;; BACK – откат в точку возврата;
;; QUIT – прекращение процесса.
;; Поле prior может содержать идентификатор
;; объекта world, обработанного перед тем,
;; как был создан данный объект, и с которым данный
;; объект может потенциально конфликтовать.
;; В поле context сохраняется текущий контекст
;; анализируемого операнда дизъюнкции.
(deftemplate world
(field tag (type INTEGER) (default 1))
(field scope (type SYMBOL) (default truth))
(field task (type SYMBOL) (default check))
(field prior (type INTEGER) (default 0))
(field context (type INTEGER) (default 0))
)
Теперь разработаем правила, которые будут выполнять перечисленные выше операции. Кроме того, нужно внести некоторые изменения и в правила, разработанные для прежней версии программы.
Выявление противоречий
В процессе решения задач о правдолюбцах и лжецах могут быть обнаружены логические противоречия двух типов: