Автор: Пользователь скрыл имя, 02 Декабря 2012 в 12:19, курсовая работа
В данной работе рассмотрены основные данные и сравнительные характеристики на примере самой ранней модели компьютера- на отдельных логических ИМС и некоторых БИС, без применения микросхем сверхвысокой степени интеграции и специальных ПЛИС и ПЛМ, на основе которых создаются компьютеры сегодня. Рассматривается центральный процессор с самой низкой тактовой частотой для 80286 чипов- 6 Мгц.
ВВЕДЕНИЕ 2
КОРПУСА ПРОЦЕССОРОВ 3
ФУНКЦИОНИРОВАНИЕ МИКРОКОМПЬЮТЕРОВ С ШИННОЙ ОРГАНИЗАЦИЕЙ 3
ОРГАНИЗАЦИЯ СИСТЕМЫ ШИН L,X,S и M В КОМПЬЮТЕРЕ PC/AT 4
РЕГИСТРЫ ПРОЦЕССОРА 80286 4
Память 6
FPM 7
ЕDO 7
BEDO 7
Вспомогательные микросхемы для СМПУ 8
Тактовый генератор 8
Контролер прерываний 8
Контролер прямого доступа к памяти 8
Другие вспомогательные микросхемы 9
Набор микросхем или chipset 9
Системные локальные шины 9
Шина ISA 9
Шина EISA 10
Локальные шины (VLB и PCI) 10
Стандарт PC MCIA 11
Микропроцессор 12
Режим реальной адресации 12
Режим защиты 12
Производительность системы 13
Системные прерывания 13
Сопроцессор. 14
Описание 14
Условия программирования 14
Условия аппаратного обеспечения 14
Базовая система ввода-вывода (BIOS) 15
Использование BIOS 15
Передача параметров 15
Список использованной литературы 16
Регистр IP служит для хранения адреса смещения следующей исполняемой команды, а регистр F- для хранения флагов.
В процессоре 80286 появился новый регистр MSW, называемый словом состояния, или регистром состояния. Его значение прежде всего в том, что, загружая этот регистр состояния специальным значением (с битом PE=1), мы тем самым переключаем режим работы с обычного на защищенный.
И наконец, последний девятнадцатый регистр TR служит для организации многозадачной работы процессора в защищенном режиме. В обычном режиме он просто недоступен. Этот регистр служит селектором сегмента состояния задачи. Существуют выполняемые только в защищенном режиме команды чтения этого регистра TR и записи в него.
Таким образом, а процессоре 80286 при сравнении его с 8086 появилось пять новых "видимых" регистров и шесть "невидимых", четыре из которых связаны с регистрами CS, DS, SS, ES. Все новые регистры служат для управления доступом к памяти и организации многозадачной работы процессора.
В отличие от недавно появившихся типов памяти, работа ИС асинхронной памяти не привязана жестко к тактовым импульсам системной шины. Поэтому данные на этой шине появляются в произвольные моменты времени (асинхронно). Но поскольку контроллер памяти (и системной шины) - устройство синхронное, то отсчет времени ведется в тактах. И если данные появятся на выходах ИС даже сразу после тактового импульса, они будут обработаны только с приходом следующего импульса. Это ограничивает возможности асинхронных ИС. Самым первым способом обмена данными с ОЗУ был так называемый Conventional с рабочей частотой от 4,77 до 40 МГц. Он позволял считывать и записывать информацию в строку только на каждый пятый такт (по механизму, описанному ранее). Поэтому из-за своей медлительности он вскоре был заменен более прогрессивными типами. Для Conventional общее число тактов, затрачиваемых на пересылку 4 строк данных, равно 20 (5 тактов для доступа по первому адресу – 5 по второму – 5 по третьему – 5 по четвертому).
Это самый ранний тип памяти, применявшийся во всех 286-386 компьютерах. В нем реализован режим постраничной адресации (fast page mode). Этот режим основан на том, что после выбора строки в ядре передача данных на выход и с выхода выполняется просто подключением к входным/выходным формирователям данных нужного "столбца" (столбцов, если понимать под столбцом один разряд в матрице ядра). Следовательно, при повторных обращениях к одной и той же строке ядра не нужно подавать адрес строки, дешифрировать его, считывать строку. В FPM повышение скорости обмена данными достигается благодаря передаче полного адреса (строки и столбца) только при первом обращении к памяти. При остальных обращениях в пределах той же строки указывается лишь сокращенный адрес (только столбцы). В результате потери времени сокращаются на два такта, ранее нужные для передачи адреса каждой строки (нет тактов для передачи собственно адреса строки и активизации сигнала RAS). Схема чтения FPM теперь другая - 5–3–3–3, даже на частоте 66 МГц. По сравнению с Conventional (20 тактов) это дает увеличение производительности на целых 70%. Однако если программа часто обращается к разным областям памяти, переходя на другую строку ядра, то формируется полный адрес, что сводит преимущества метода на нет. К счастью, на практике часто происходит обмен достаточно крупными сплошными массивами данных (например, многие команды процессора кодируются несколькими байтами). Возможно, именно поэтому метод был положен в основу всех последующих технологий, однако нужно все же не забывать, что все их преимущества также проявляются только в пределах одной страницы (строки ядра).
EDO
Архитектура EDO (extended data output) характеризуется увеличенным по сравнению с FPM временем хранения данных на выходе микросхемы. Дело в том, что в обычных ИС FPM выходные данные остаются действительными только при активном сигнале CAS (рис. 2б). Из-за этого при втором и последующих доступах к странице требуется три такта: такт переключения CAS в активное состояние, такт считывания данных и такт переключения CAS в неактивное состояние. В ИС EDO данные запоминаются во внутреннем регистре по активному (спадающему) фронту сигнала CAS и сохраняются еще некоторое время после появления следующего активного фронта. Это позволяет нормально использовать данные, когда CAS переведен в неактивное состояние. При этом схема чтения у EDO уже 5–2–2–2 (11), что на 20% быстрее FPM (14), и нормальная работа возможна даже при тактовой частоте контроллера памяти (и системной шины) 75 МГц. Память EDO до сих пор верой и правдой служит во всех компьютерах с частотой процессора до 166 МГц (и с системными платами на чипсетах до Intel 430 FX), а также во многих видеоускорителях трехмерной графики. EDO также используется в тех случаях, когда мощный контроллер памяти сам оптимизирует организацию банков памяти и их чередование при многобанковой структуре ОЗУ, характерной для некоторых серверов. Несмотря на появление других типов, этот тип ИС еще долго не уйдет со сцены - это подтверждается и тем, что ведущие производители чипов ОЗУ начали выпуск модулей со 128 Мб.
BEDO (burst EDO - EDO с пакетной пересылкой данных)
Архитектура BEDO была разработана в компании VIA Technologies - известном производителе чипсетов для материнских плат. В ней наряду с технологиями FPM и EDO используется пересылка данных пакетами (burst). Новизна такого метода в том, что при первом обращении данные автоматически считываются сразу же для нескольких последовательных слов (ведь ядро устроено так, что всегда считывается целая строка, то есть все столбцы становятся известны). При этом для пересылки burst-пакета задаются адрес строки и адрес только самого первого "столбца", а внутренний счетчик автоматически следит за тем, чтобы был передан весь пакет. Это исключает необходимость пересылать адреса для последующих ячеек. Таким образом, благодаря burst-технологии увеличивается эффективность последовательного чтения больших массивов данных. Новый способ пересылки сокращает время считывания каждого слова еще на такт, что позволяет BEDO работать по схеме 5–1–1–1 (всего 8 тактов). Однако для этого необходима поддержка со стороны набора системной логики. В число таких наборов входят Intel 430 HX, VIA 580VP, 590VP. Максимальная паспортная рабочая частота BEDO - 66 МГц, хотя ИС хорошо функционируют на частоте вплоть до 83 МГц. BEDO еще не успела широко распространиться, как была вытеснена SDRAM, разработанной приблизительно в то же время Intel. Завершая рассмотрение асинхронных типов ИС, отметим, что их быстродействие принято характеризовать временем цикла обращения, то есть минимальным периодом, с которым можно выполнить циклическое обращение по произвольным адресам (все пять операций). Именно это имеется в виду, когда говорят о "60-наносекундном модуле". При переходе к синхронной памяти (использующей для работы внешнюю тактовую частоту) вместо продолжительности цикла доступа стали применять минимально допустимый период тактовой частоты. Так появились "10-нс модули памяти", "8-нс" и даже "7-нс". Увы, за один такт добраться к произвольным данным не могут и они.
Вспомогательные микросхемы для СМПУ.
Тактовый генератор
Для получения стабильной определенной частоты на системной плате могут находиться 1 или 2 кварцевых асоцилятора. Повышать частоту тактовых импульсов можно лишь до определенного предела, фиксированного для каждой модели микропроцессора. Для многих микропроцессоров существует и нижний уровень ограничения на тактовую частоту.
Дело в том, что отдельные узлы микропроцессора могут быть построены по принципу динамической памяти, и требовать постоянной регенерации. Выходной сигнал основного кварцевого генератора предварительно делится на 2 и обозначается как CLK2IN. Тактовый сигнал для шины ISA обычно равен 8 МГц. Он обычно обозначается как ATCLK или BBVSCLK. При переключении кнопки Turbo тот или иной тактовый сигнал подключается к соответствующему входу микропроцессора. Системная шина может тактироваться либо сигналом CLK2IN, либо CLK2IN/2, либо ATCLK. Для каналов DMA на системной плате используется еще один сигнал SCLK зависящий от CLK2IN и от ATCLK. Для часов реального времени на системной плате используется отдельный кварц 32768 Кбит.
Контроллер прерываний
В первых IBM PC использовалась микросхема Intel 8259 (I8259) имеющая 8 входов для сигналов прерываний. Контроллер программируется на установление приоритетов прерываний, наивысшим приоритетом обладает линии IRQ0, наименьшим IRQ7. Значит в IBM PC/AT количество линий прерываний увеличено до 15 путем каскадного включения двух микросхем I8259 при котором выход второго контроллера подключался к входу IRQ2 первого. Таким образом, линии IRQ8-IRQ15 имеют приоритет ниже, чем IRQ1, но выше чем IRQ3.
Контроллер прямого доступа к памяти
В IBM PC/XT для организации прямого доступа к памяти использовалась одна 4 контактная микросхема I8237. Канал 0 которой предназначен для регенерации динамической памяти. Каналы 2 и 3 предназначены для управления высокоскоростной передачей данных между дисководов системных дисков винчестеров и операционной памятью. Только канал 1 DMA был доступен для дополнительного оборудования. IBM PC/AT имеет уже 7 каналов прямого доступа к памяти. В первых компьютерах это достигалось каскадным включением двух микросхем I8237. Так как прямой обмен данными между операционной памятью и периферийными устройствами имеет существенное ограничение, в том числе и по скорости то PC/AT задействован только канал 2 для обмена с приводом гибкого диска. Для первых 4 каналов с 0 по 3 передача данных осуществляется побайтно. Для каналов 5-7 16 разрядными словами.
Другие вспомогательные
Таймеры, реализованные ранее на микросхеме I8254 и часы реального времени MC146818A. В зависимости от типа процессора на системной плате могут располагаться контроллеры шины и памяти, системный и периферийный контроллеры, кэш контроллер, а также буфера для данных и адресов.
Набор микросхем или chipset
Современный PC уже не использует отдельные чипы контроллеров 8259 и 8237. Их функции реализованы в СБИС системных и периферийных контроллеров. На системных платах вместо большого количества микросхем средней степени интеграции MSI заменено на несколько от 1 до 4 СБИС (VLSI). Такие VLSI называют набором микросхем или chipset. Они занимают меньше места, потребляют меньший ток, имеют более высокую надежность. Например, набор Triton (8243 0FX) фирмы Intel поддерживает специализацию локальной шины PCI, синхронную (конвейерную) и асинхронную кэш память, а также EDO и FPMDRAM. Он имеет также встроенный контроллер Enhanced IDE устройств. В большинство наборов разных фирм тем или иным образом входит периферийный контроллер, например микросхема 82С206 или ей подобная, функционально содержащая 2 контроллера прерываний типа 8259, 2 контроллера прямого доступа к памяти типа 8237, таймер типа 8254, часы реального времени и более 100 байт CMOS RAM для хранения системной конфигурации.
Системные локальные шины
Передачей информации по шине управляет одно из подключенных к ней устройств или специально выделенный для этого узел называемый арбитром шины. Системная шина IBM PC и PC/XT была предназначена для одновременной передачи только 8 бит информации, она имела 20 адресных линий (адресное пространство 1Мбайт), для работы с внешними устройствами в этой шине имелись 4 линии адресных прерываний и 4 линии запросов прямого доступа к памяти. Для подключений плат расширения использовались 62 контактные разъемы. Системной шиной микропроцессор синхронизировался от одного тактового генератора с частотой 4,77МГц. Теоретическая скорость передачи могла достигать 4,5Мбайт в секунду.
Шина ISA
Шина ISA разрабатывалась для возможностей микропроцессора Intel 286. Она имела 36 контактный разъем для платы расширения, 16 линий данных и 24 адресных линии. Поэтому имелась возможность обращаться на прямую к 16 Мбайтам памяти. Линий аппаратных прерываний 15, каналов DMA 7. Она полностью включала в себя возможности 8 разрядной шины. Системные платы с шиной ISA допускали возможность синхронизации работы самой шины и микропроцессора разными тактовыми частотами, что позволяло устройствам на платах расширения работать медленнее, чем микропроцессор. Это стало актуальным, когда тактовая частота микропроцессора превысила 10-12 МГц. Шина стала работать асинхронно с процессором на частоте 8 МГц. Теоретическая максимальная скорость передачи 16 Мбайт в секунду.
Шина ESA
Эта шина разрабатывалась для
Стандарт ESA поддерживает многопроцессорную
архитектуру для интеллектуальных плат
с собственными микропроцессорами. Поэтому
данные, например, от контроллера жестких
дисков, графических контроллеров, контроллеров
сети могут обрабатываться независимо
без загрузки главного процессора. Теоретическая
максимальная скорость передачи в пакетном
режиме может достичь 33 Мбайт в секунду,
в стандартном не превосходит значения
шины ESA.
На ESA
предусматривается централизованный
метод управления через системный арбитр.
Таким образом, поддерживается использование
ведущих устройств на шине. Однако возможно
также представление шины запрашивающим
устройствам по циклическому принципу.
В ESA
имеется 7 каналов прямого доступа к памяти.
Контроллер прямого доступа к памяти имеет
возможность поддерживать 8, 16 и 32 разрядные
режимы передачи данных. В общем случае
возможно выполнение 1 из 4 циклов обмена
между устройством прямого доступа к памяти
и памятью системы. Это ISA совместимые циклы, использующие
для передачи данных 8 контактов шины,
циклы типа A исполняемые за 6 тактов шины,
циклы типа B исполняемые за 4 такта шины
и циклы типа C исполняемые за 1 такт шины.
Типы A,B и C поддерживаются 8, 16 и 32 разрядными
устройствами, причем возможно автоматическое
изменение ширины данных при передаче
в несоответствующие размеры памяти. Приоритет
прямого доступа к памяти может быть либо
переменным, либо фиксированным. Линии
прерывания шины ISA, по которым запросы передаются
в виде фронтов сигналов, сильно подвержены
импульсным помехам. Поэтому в системе ESA кроме
таких, предусматривается также сигнал
прерываний активный по уровню. Для компьютеров
с шиной ESA предусмотрена автоматически конфигурированная
система, поэтому обычно с платами расширения
изготовители поставляют специальные
файлы конфигурации. Информация, из которых
исполняется на этапе подготовки системы
к работе. В архитектуре ESA предусматривается выделение определенных
групп адресов ввода вывода для конкретных
слотов шины, каждому разъему отводят
4 Кбайта адресного диапазона.
Локальные шины
Разработчики компьютеров на микросхемах 386, 486 начали использовать раздельные шины для памяти и устройств ввода вывода, что позволило работать с памятью с наивысшей для нее скоростью, тем не менее, при таком подходе вся система не обеспечивает достаточной производительности, т.к. устройства подключенные через разъемы расширения не могут достичь скорости обмена сравнимой с частотой микропроцессора. В основном это касается работы с контроллерами накопителей и аидеоодаптеров. Для решения данной проблемы стали использоваться локальные шины, связывающие процессор с контроллерами периферии. В настоящее время используются локальные шины VLB и PCI, обе шины позволяют периферийным устройствам работать с тактовой частотой до 32 МГц. Шины PCI относятся к классу пристроек т.к. между локальной шиной процессора и самой PCI находиться специальная микросхема согласующего моста. Спецификация шин PCI позволяет использовать ее вне зависимости от типа процессора. Специальный контроллер обеспечивает разделение управляющих сигналов локальной шиной микропроцессора и PCI шиной и, кроме того, осуществляет арбитраж на PCI. К шине могут подключаться до 10 устройств.
Поскольку каждая плата
расширения PCI работает с разделителем между
двумя периферийными устройствами, то
общее число разъемов уменьшится.
Шина работает на фиксированной частоте
33 МГц, предусматривает напряжение питания
для контроллеров 5 и 3,3 V. А также обеспечивает режим их
автоконфигурации. PCI карты на напряжении 5V могут вставляться только в соответствующие
слоты конструктивно отличающихся от
слотов для карт с напряжением 3,3V. Имеются и универсальные PCI адаптеры, работающие в любом их
слотов. Шина PCI может использовать 124 контактный
(32 разрядная передача данных) или 188 контактный
разъем (64 разрядная передача данных).
При этом теоретически возможная скорость
обмена составляет 132 и 264 Мбайта в секунду.
На системной плате устанавливается не
больше 3-4 разъемов PCI. На компьютерах I286 вообще не устанавливались.
Стандарт PCMCIA
Устройства соответствующие
PCMCIA
устройства используются как платы расширения
для модулей памяти модемов, SCSI адаптеров, сетевых карт, звуковых
карт, винчестеров, флеш памяти. Разъем PCMCIA размещается
в стандартном отсеке с форм фактором
3,5 или 5,25 дюйма. Первая версия стандарта
поддерживала все шины памяти, включая: DRAM (SRAM, PSRAM,
ROM, PROM, UVEPROM, EEPROM, FLASH).
Во второй версии спецификации стандарта появились: поддержка устройств ввода вывода, дополнительный сервис для модулей флеш памяти, поддержка модулей с двойным напряжением питания и XIP механизм.
Информация о работе Персональный компьютер на основе процессора INTEL 80286