Автор: Пользователь скрыл имя, 11 Ноября 2010 в 14:03, реферат
Кэш-память, состоящая из “m” слов, сохраняет копии не менее, чем “m”-слов из всех слов основной памяти. Если копия, к адресу которой был выполнен доступ ЦП, существует в кэш-памяти, то считывание завершается уже при доступе
к кэш-памяти. Отметим, что использование кэш-памяти основывается на принципах пространственной и временной локальности. В случае пространственной локальности основная память разбивается на блоки с фиксированным числом слов и обмен данными между основной памятью и кэш-памятью выполняется блоками. При доступе к некоторому адресу центральный процессор должен сначала определить содержит ли кэш-память копию блока с указанным адресом, и если имеется, то определить, с какого адреса кэш-памяти начинается этот блок. Эту информацию ЦП получает с помощью механизма преобразования адресов.
•Кэш-память
•Введение
•Причины внедрения кэш-памяти
•Что такое кэш-память?
•Внутренний кэш
•Смешанная и разделенная кэш-память
•Статическая и динамическая память
•TLB как разновидность кэш-памяти
•Организация кэш-памяти
•Стратегия размещения
•Отображение секторов ОП в кэш-памяти
•Иерархическая модель кэш-памяти
•Ассоциативность кэш-памяти
•Размер строки и тега кэш-памяти
•Типы подключения кэш-памяти
•Сегментирование кэш-памяти и быстродействие жестких дисков
•Увеличение производительности кэш-памяти
•Зачем увеличивать кэш?
•Выводы
Иерархическая
модель кэш-памяти.
Как правило, кэш-память имеет многоуровневую архитектуру. Например, в компьютере с 32 Кбайт внутренней (в ядре ЦП) и 1 Мбайт внешней (в корпусе ЦП или на системной плате) кэш-памяти первая будет считаться кэш-памятью 1-го уровня (L1), а вторая - кэш-памятью 2-го уровня (L2). В современных серверных системах количество уровней кэш-памяти может доходить до четырех, хотя наиболее часто используется двух- или трехуровневая схема.
В некоторых процессорных архитектурах кэш-память 1-го уровня разделена на кэш команд (Instruction Cache, I-cache) и кэш данных (Data Cache, D-cache), причем необязательно одинаковых размеров. С точки зрения схемотехники проще и дешевле проектировать раздельные I-cache и D-cache: выборку команд проводит I-box, а выборку данных - Е-box и F-box, хотя в обоих случаях задействуются А-box и С-box. Все эти блоки велики, и обеспечить им одновременный и быстрый доступ к одному кэшу проблематично. Кроме того, это неизбежно потребовало бы увеличения количества портов доступа, что также усложняет задачу проектирования.
Так как I-cache и D-cache должны обеспечивать очень низкие задержки при доступе (это справедливо для любого кэша L1), приходится жертвовать их объемом - обычно он составляет от 16 до 32 Кбайт. Ведь чем меньше размер кэша, тем легче добиться низких задержек при доступе.
Кэш-память 2-го уровня, как правило, унифицирована, т. е. может содержать как команды, так и данные. Если она встроена в ядро ЦП, то говорят о S-cache (Secondary Cache, вторичный кэш), в противном случае - о B-cache (Backup Cache, резервный кэш). В современных серверных ЦП объем S-cache составляет от одного до нескольких мегабайт, a B-cache - до 64 Мбайт. Если дизайн ЦП предусматривает наличие встроенной кэш-памяти 3-го уровня, то ее именуют T-cache (Ternary Cache, третичный кэш). Как правило, каждый последующий уровень кэш-памяти медленнее, но больше предыдущего по объему. Если в системе присутствует B-cache (как последний уровень модели кэш-памяти), то он может контролироваться как ЦП, так и набором системной логики.
Если
в момент выполнения некоторой команды
в регистрах не окажется данных для
нее, то они будут затребованы
из ближайшего уровня кэш-памяти, т. е.
из D-cache. В случае их отсутствия в D-Cache запрос
направляется в S-cache и т. д. В худшем случае
данные будут доставлены непосредственно
из памяти. Впрочем, возможен и еще более
печальный вариант, когда подсистема управления
виртуальной памятью операционной системы
(ОС) успевает вытеснить их в файл подкачки
на жесткий диск. В случае доставки из
оперативной памяти потери времени на
получение нужных данных могут составлять
от десятков до сотен тактов ЦП, а в случае
нахождения данных на жестком диске речь
уже может идти о миллионах тактов.
Ассоциативность
кэш-памяти.
Одна из фундаментальных характеристик кэш-памяти - уровень ассоциативности - отображает ее логическую сегментацию. Дело в том, что последовательный перебор всех строк кэша в поисках необходимых данных потребовал бы десятков тактов и свел бы на нет весь выигрыш от использования встроенной в ЦП памяти. Поэтому ячейки ОЗУ жестко привязываются к строкам кэш-памяти (в каждой строке могут быть данные из фиксированного набора адресов), что значительно сокращает время поиска. С каждой ячейкой ОЗУ может быть связано более одной строки кэш-памяти: например, n-канальная ассоциативность (n-way set associative) обозначает, что информация по некоторому адресу оперативной памяти может храниться в п мест кэш-памяти.
Выбор места может проводиться по различным алгоритмам, среди которых чаще всего используются принципы замещения LRU (Least Recently Used, замещается запись, запрошенная в последний раз наиболее давно) и LFU (Least Frequently Used, запись, наименее часто запрашиваемая), хотя существуют и модификации этих принципов. Например, полностью ассоциативная кэшпамять (fully associative), в которой информация, находящаяся по произвольному адресу в оперативной памяти, может быть размещена в произвольной строке. Другой вариант - прямое отображение (direct mapping), при котором информация, которая находится по произвольному адресу в оперативной памяти, может быть размещена только в одном месте кэш-памяти. Естественно, этот вариант обеспечивает наибольшее быстродействие, так как при проверке наличия информации контроллеру придется "заглянуть" лишь в одну строку кэша, но и наименее эффективен, поскольку при записи контроллер не будет выбирать "оптимальное" место. При одинаковом объеме кэша схема с полной ассоциативностью будет наименее быстрой, но наиболее эффективной.
Полностью
ассоциативный кэш встречается на практике,
но, как правило, у него очень небольшой
объем. Например, в ЦП Cyrix 6x86 использовалось
256 байт такого кэша для команд перед унифицированным
16-или 64-Кбайт кэшем L1. Часто полноассоциативную
схему применяют при проектировании TLB
(о них будет рассказано ниже), кэшей адресов
переходов, буферов чтения-записи и т.
д. Как правило, уровни ассоциативности
I-cache и D-cache довольно низки (до четырех
каналов) - их увеличение нецелесообразно,
поскольку приводит к увеличению задержек
доступа и в итоге негативно отражается
на производительности. В качестве некоторой
компенсации увеличивают ассоциативность
S-cache (обычно до 16 каналов), так как задержки
при доступе к этому кэшу неважны. Например,
согласно результатам исследований часто
используемых целочисленных задач, у Intel
Pentium III 16 Кбайт четырехканального D-cache
было достаточно для покрытия около 93%
запросов, а 16-Кбайт четырехканального
I-cache - 99% запросов.
Размер
строки и тега кэш-памяти.
Немаловажная характеристика кэш-памяти - размер строки. Как правило, на одну строку полагается одна запись адреса (так называемый тег), которая указывает, какому адресу в оперативной памяти соответствует данная линия. Очевидно, что нумерация отдельных байтов нецелесообразна, поскольку в этом случае объем служебной информации в кэше в несколько раз превысит объем самих данных. Поэтому один тег обычно полагается на одну строку, размер которой обычно 32 или 64 байта (реально существующий максимум 1024 байта), и эквивалентен четырем (иногда восьми) разрядностям системной шины данных. Кроме того, каждая строка кэш-памяти сопровождается некоторой информацией для обеспечения отказоустойчивости: одним или несколькими битами контроля четности (parity) или восемью и более байтами обнаружения и коррекции ошибок (ЕСС, Error Checking and Correcting), хотя в массовых решениях часто не используют ни того, ни другого.
Размер
тега кэш-памяти зависит от трех основных
факторов: объема кэш-памяти, максимального
кэшируемого объема оперативной
памяти, а также ассоциативности кэш-памяти.
Математически этот размер рассчитывается
по формуле:
Stag=log2(Smem*A/Scache),
где Stag - размер
одного тега кэш-памяти, в битах; Smem - максимальный
кэшируемый объем оперативной памяти,
в байтах; Scache - объем кэш-памяти, в байтах;
А - ассоциативность кэш-памяти, в каналах.
Отсюда
следует, что для системы с 1-Гбайт
оперативной памятью и 1-Мбайт
кэш-памятью с двухканальной
Какая информация содержится в тегах кэш-памяти? Это информация об адресах, но как можно точно отобразить расположение строки кэш-памяти на всем пространстве кэшируемого объема оперативной памяти, используя столь незначительное количество адресных битов? Это понятие является фундаментальным в понимании принципов функционирования кэш-памяти. Рассмотрим предыдущий пример, с 11-бит тегами. Учитывая логическое сегментирование благодаря двухканальной ассоциативности, можно рассматривать данную кэш-память как состоящую из двух независимых сегментов по 512 Кбайт каждый. Представим оперативную память как состоящую из "страниц" по 512 Кбайт каждая - их будет соответственно 2048 штук. Далее, Iog2 (2048) = 11 (основание логарифма равно 2, так как возможны только два логических состояния каждого бита). Это означает, что фактически тег - не номер отдельной строки кэш-памяти, а номер "страницы" памяти, на которую отображается та или иная строка. Другими словами, в пределах "страницы" сохраняется прямое соответствие ее "строк" с соответствующими строками кэш-памяти, т. е. п-я строка кэш-памяти соответствует n-й "строке" данной "страницы" оперативной памяти.
Рассмотрим механизм работы кэш-памяти разных видов ассоциативности. Допустим, имеется абстрактная модель с восемью строками кэш-памяти и 64 эквивалентными строками оперативной памяти. Требуется поместить в кэш строку 9 оперативной памяти (заметим, что все строки нумеруются от нуля и по возрастающей). В модели с прямым отображением эта строка может занять только одно место: 9 mod 8=1 (вычисление остатка от деления нацело), т. е. место строки 1. Если взять модель с двухканальной ассоциативностью, то эта строка может занять одно из двух мест: 9 mod 4=1, т. е. строку 1 любого канала (сегмента). Полноассоциативная модель предоставляет свободу для размещения, и данная строка может занять место любой из восьми имеющихся. Другими словами, фактически имеется 8 каналов, каждый из которых состоит из 1 строки.
Ни
одна из вышеуказанных моделей не
позволит, разумеется, поместить в
кэш больше строк, чем он физически
в состоянии разместить, они лишь
предлагают различные варианты, различающиеся
балансом эффективности использования
кэша и скорости доступа к нему.
Типы
подключения кэш-памяти.
Количество портов чтения-записи кэш-памяти - показатель того, сколько одновременных операций чтения-записи может быть обработано. Хотя жестких требований и нет, определенное соответствие набору функциональных устройств ЦП должно прослеживаться, так как отсутствие свободного порта во время исполнения команды приведет к вынужденному простою.
Существует два основных способа подключения кэшпамяти к ЦП для чтения: сквозной и побочный (Look-Through и Look-Aside). Суть первого в том, что при необходимости данные сначала запрашиваются у контроллера кэш-памяти самого высокого уровня, который проверяет состояние подключенных тегов и возвращает либо нужную информацию, либо отрицательный ответ, и в этом случае запрос перенаправляется в более низкий уровень иерархии кэш-памяти или в оперативную память. При реализации второго способа чтения запрос одновременно направляется как кэш-контроллеру самого высокого уровня, так и остальным кэш-контроллерам и контроллеру оперативной памяти. Недостаток первого способа очевиден: при отсутствии информации в кэше высокого уровня приходится повторять запрос, и время простоя ЦП увеличивается. Недостаток второго подхода - высокая избыточность операций и, как следствие, "засорение" внутренних шин ЦП и системной шины ненужной информацией. Логично предположить, что если для кэшей L1 оптимальна сквозная схема, то для T-cache или B-cache побочная схема может оказаться более выгодной. Для S-cache выбор неоднозначен.
Различают также локальный и удаленный кэш. Локальным называют кэш, находящийся либо в ядре ЦП, либо на той же кремниевой подложке или в корпусе ЦП, удаленным - размещенный на системной плате. Соответственно локальным кэшем управляет контроллер в ядре ЦП, а удаленным - НМС системной платы. Локальный кэш с точки зрения быстродействия предпочтительнее, так как интерфейс к удаленному кэшу обычно мультиплексируется с системной шиной. С одной стороны, когда другой ЦП захватывает общую системную шину или какой-либо периферийный контроллер обращается к памяти напрямую, удаленный кэш может оказаться временно недоступным. С другой - такой кэш легче использовать в многопроцессорных системах.
Существуют два распространенных способа записи в кэш: сквозной (Write-Through) и обратной (Write-Back) записи. В первом случае информация одновременно сохраняется как в текущий, так и в более низкий уровень иерархии кэш-памяти (или прямо в оперативную память при отсутствии такового). Во втором - данные сохраняются только в текущем уровне кэш-памяти, при этом возникает ситуация, когда информация в кэше и оперативной памяти различается, причем последняя становится устаревшей. Для того чтобы при сбросе кэша информация не была необратимо потеряна, к каждой строке кэша добавляется "грязный" бит (dirty bit, иначе известный как modified). Он нужен для обозначения того, соответствует ли информация в кэше информации в оперативной памяти, и следует ли ее записать в память при сбросе кэша.