Этапы эвлюции технологий программирования

Автор: Пользователь скрыл имя, 17 Января 2013 в 02:19, курсовая работа

Краткое описание

Целью является исследования истории развития технологий программирования.
Для достижения поставленной цели необходимо решить следующие задачи:
Проанализировать информационные источники по технологиям программирования;
Рассмотреть историю развития технологий программирования;
Выявить этапы развития технологий программирования.

Оглавление

Введение 3
Глава 1. Этапы развития технологий программирования 4
1.1 Первый этап - «стихийное» программирование. 5
1.2 Второй этап - структурный подход к программированию 9
1.3 Третий этап - объектный подход к программированию 11
1.4 Четвертый этап - компонентный подход и CASE-технологии 14
Заключение 20

Файлы: 1 файл

Реферат111.doc

— 438.50 Кб (Скачать)

 

Оглавление

 

 

Введение

Программирование — сравнительно молодая и быстро развивающаяся отрасль науки и техники. Опыт ведения реальных разработок и совершенствования, имеющихся программных и технических средств постоянно переосмысливается, в результате чего появляются новые методы, методологии и технологии, которые, в свою очередь, служат основой более современных средств разработки программного обеспечения. Исследовать процессы создания новых технологий и определять их основные тенденции целесообразно, сопоставляя эти технологии с уровнем развития программирования и особенностями имеющихся в распоряжении программистов программных и аппаратных средств[1].

Объектом исследования являются технологии программирования.

Предметом исследования является история развития технологий программирования.

Целью является исследования истории развития технологий программирования.

Для достижения поставленной цели необходимо решить следующие задачи:

  1. Проанализировать информационные источники по технологиям программирования;
  2. Рассмотреть историю развития технологий программирования;
  3. Выявить этапы развития технологий программирования.

 

 

Глава 1. Этапы развития технологий программирования

Технологией программирования называют совокупность методов и  средств, используемых в процессе разработки программного обеспечения. Как любая другая технология, технология программирования представляет собой набор технологических инструкций, включающих [1]:

• указание последовательности выполнения технологических операций;

• перечисление условий, при которых выполняется та или  иная операция;

•описания самих операций, где для каждой операции определены исходные данные, результаты, а также инструкции, нормативы, стандарты, критерии и методы оценки и т. п. (рис. 1.1).

Кроме набора операций и  их последовательности, технология также  определяет способ описания проектируемой  системы, точнее модели, используемой на конкретном этапе разработки.

Различают технологии, используемые на конкретных этапах разработки или  для решения отдельных задач этих этапов, и технологии, охватывающие несколько этапов или весь процесс разработки. В основе первых, как правило, лежит ограниченно применимый метод, позволяющий решить конкретную задачу. В основе вторых обычно лежит базовый метод или подход,

 


определяющий совокупность методов, используемых на разных этапах разработки, или методологию.

Чтобы разобраться в  существующих технологиях программирования целесообразно рассматривать эти  технологии в историческом контексте, выделяя основные этапы развития программирования, как науки.

1.1 Первый этап - «стихийное» программирование.

Этот этап охватывает период от момента появления первых вычислительных машин до середины 60-х годов XX в [2]. В этот период практически отсутствовали сформулированные технологии, и программирование фактически было искусством. Первые программы имели простейшую структуру. Они состояли из собственно программы на машинном языке и обрабатываемых ею данных (рис. 1.2). Сложность программ в машинных кодах ограничивалась способностью программиста одновременно мысленно отслеживать последовательность выполняемых операций и местонахождение данных при программировании.

Появление ассемблеров  позволило вместо двоичных или 16-ричных кодов использовать символические  имена данных и мнемоники кодов операций. В результате программы стали более «читаемыми».

Создание языков программирования высокого уровня, таких, как FORTRAN и ALGOL, существенно упростило программирование вычислений, снизив уровень детализации операций. Это, в свою очередь, позволило увеличить сложность программ.

Революционным было появление  в языках средств, позволяющих оперировать  подпрограммами.

 


(Идея написания подпрограмм  появилась гораздо раньше, но  отсутствие средств поддержки  в первых языковых средствах  существенно снижало эффективность их применения) Подпрограммы можно было сохранять и использовать в других программах. В результате были созданы огромные библиотеки расчетных и служебных подпрограмм, которые по мере надобности вызывались из разрабатываемой программы.

Типичная программа  того времени состояла из основной программы, области глобальных данных и набора подпрограмм (в основном библиотечных), выполняющих обработку  всех данных или их части (рис. 1.3).


 

Слабым местом такой  архитектуры было то, что при увеличении количества подпрограмм возрастала вероятность искажения части глобальных данных какой-либо подпрограммой. Например, подпрограмма поиска корней уравнения на заданном интервале по методу деления отрезка пополам меняет величину интервала. Если при выходе из подпрограммы не предусмотреть восстановления первоначального интервала, то в глобальной области окажется неверное значение интервала. Чтобы сократить количество таких ошибок, было предложено в подпрограммах размещать локальные данные (рис. 1.4).


 

Сложность разрабатываемого программного обеспечения при использовании подпрограмм с локальными данными по-прежнему ограничивалась возможностью программиста отслеживать процессы обработки данных, но уже на новом уровне. Однако появление средств поддержки подпрограмм позволило осуществлять разработку программного обеспечения нескольким программистам параллельно.

В начале 60-х годов XX в. разразился «кризис программирования». Он выражался в том, что фирмы, взявшиеся за разработку сложного программного обеспечения, такого, как операционные системы, срывали все сроки завершения проектов [2]. Проект устаревал раньше, чем был готов к внедрению, увеличивалась его стоимость, и в результате многие проекты так никогда и не были завершены.

Объективно все это было вызвано несовершенством технологии программирования. Прежде всего стихийно использовалась разработка «снизу-вверх» - подход, при котором вначале проектировали и реализовывали сравнительно простые подпрограммы, из которых затем пытались построить сложную программу. В отсутствии четких моделей описания подпрограмм и методов их проектирования создание каждой подпрограммы превращалось в непростую задачу, интерфейсы подпрограмм получались сложными, и при сборке программного продукта выявлялось большое количество ошибок согласования. Исправление таких ошибок, как правило, требовало серьезного изменения уже разработанных подпрограмм, что еще более осложняло ситуацию, так как при этом в программу часто вносились новые ошибки, которые также необходимо было исправлять... В конечном итоге процесс тестирования и отладки программ занимал более 80 % времени разработки, если вообще когда-нибудь заканчивался. На повестке дня самым серьезным образом стоял вопрос разработки технологии создания сложных программных продуктов, снижающей вероятность ошибок проектирования.

Анализ причин возникновения  большинства ошибок позволил сформулировать новый подход к программированию, который был назван «структурным» [3].

1.2 Второй этап - структурный подход к программированию

(60-70-е годы XX в.). Структурный  подход к программированию представляет  собой совокупность рекомендуемых  технологических приемов, охватывающих  выполнение всех этапов разработки  программного обеспечения. В основе  структурного подхода лежит декомпозиция (разбиение на части) сложных систем с целью последующей реализации в виде отдельных небольших (до 40 - 50операторов) подпрограмм [4].

С появлением других принципов  декомпозиции (объектного, логического и т. д.) данный способ получил название процедурной декомпозиции.

В отличие от используемого  ранее процедурного подхода к  декомпозиции, структурный подход требовал представления задачи в виде иерархии подзадач простейшей структуры. Проектирование, таким образом, осуществлялось «сверху вниз» и подразумевало реализацию общей идеи, обеспечивая проработку интерфейсов подпрограмм. Одновременно вводились ограничения на конструкции алгоритмов, рекомендовались формальные модели их описания, а также специальный метод проектирования алгоритмов - метод пошаговой детализации.

Поддержка принципов  структурного программирования была заложена в основу так называемых процедурных  языков программирования. Как правило, они включали основные «структурные» операторы передачи управления, поддерживали вложение подпрограмм, локализацию и ограничение области «видимости» данных. Среди наиболее известных языков этой группы стоит назвать PL/1, ALGOL-68, Pascal, С.

Одновременно со структурным программированием появилось огромное количество языков, базирующихся на других концепциях, но большинство из них не выдержало конкуренции. Какие-то языки были просто забыты, идеи других были в дальнейшем использованы в следующих версиях развиваемых языков.

Дальнейший рост сложности  и размеров разрабатываемого программного обеспечения потребовал развития структурирования данных. Как следствие этого в языках появляется возможность определения пользовательских типов данных. Одновременно усилилось стремление разграничить доступ к глобальным данным программы, чтобы уменьшить количество ошибок, возникающих при работе с глобальными данными. В результате появилась и начала развиваться технология модульного программирования [2].

 


Модульное программирование предполагает выделение групп подпрограмм, использующих одни и те же глобальные данные в отдельно компилируемые модули (библиотеки подпрограмм), например, модуль графических ресурсов, модуль подпрограмм вывода на принтер (рис. 1.5). Связи между модулями при использовании данной технологии осуществляются через специальный интерфейс, в то время как доступ к реализации модуля (телам подпрограмм и некоторым «внутренним» переменным) запрещен.

 

Эту технологию поддерживают современные версии языков Pascal и  С (C++), языки Ада и Modula [2].

Использование модульного программирования существенно упростило разработку программного обеспечения несколькими программистами. Теперь каждый из них мог разрабатывать свои модули независимо, обеспечивая взаимодействие модулей через специально оговоренные межмодульные интерфейсы. Кроме того, модули в дальнейшем без изменений можно было использовать в других разработках, что повысило производительность труда программистов.

Практика показала, что структурный подход в сочетании с модульным программированием позволяет получать достаточно надежные программы, размер которых не превышает 100 000 операторов [10]. Узким местом модульного программирования является то, что ошибка в интерфейсе при вызове подпрограммы выявляется только при выполнении программы (из-за раздельной компиляции модулей обнаружить эти ошибки раньше невозможно). При увеличении размера программы обычно возрастает сложность межмодульных интерфейсов, и с некоторого момента предусмотреть взаимовлияние отдельных частей программы становится практически невозможно.

 

Для разработки программного обеспечения большого объема было предложено использовать объектный подход.

1.3 Третий этап - объектный подход к программированию

(с середины 80-х до  конца 90-х годов XXв.). Объектно-ориентированное  программирование определяется как технология создания сложного программного обеспечения, основанная на представлении программы в виде совокупности объектов, каждый из которых является экземпляром определенного типа (класса), а классы образуют иерархию с наследованием свойств [2]. Взаимодействие программных объектов в такой системе осуществляется путем передачи сообщений (рис. 1.6).

Объектная структура программы  впервые была использована в языке  имитационного моделирования сложных  систем Simula, появившемся еще в 60-х годах XX в. Естественный для языков моделирования способ представления программы получил развитие в другом специализированном языке моделирования - языке Smalltalk (70-е годы XXв.), а затем был использован в новых версиях универсальных языков программирования, таких, как Pascal, C++, Modula, Java.

Основным достоинством объектно-ориентированного программирования по сравнению с модульным программированием является «более естественная» декомпозиция программного обеспечения, которая существенно облегчает его разработку. Это приводит к более полной локализации данных и интегрированию их с подпрограммами обработки, что позволяет вести практически независимую разработку отдельных частей (объектов) программы. Кроме этого, объектный подход предлагает новые способы организации программ, основанные на механизмах наследования, полиморфизма, композиции, наполнения. Эти механизмы позволяют конструировать сложные объекты из сравнительно простых. В результате существенно увеличивается показатель повторного использования кодов и появляется возможность создания библиотек классов для различных применений.

Бурное развитие технологий программирования, основанных на объектном  подходе, позволило решить многие проблемы. Так были созданы среды, поддерживающие визуальное программирование, например, Delphi, C++ Builder, Visual C++ и т. д. При использовании визуальной среды у программиста появляется возможность проектировать некоторую часть, например, интерфейсы будущего продукта, с применением визуальных средств добавления и настройки специальных библиотечных компонентов. Результатом визуального проектирования является заготовка будущей программы, в которую уже внесены соответствующие коды.

Информация о работе Этапы эвлюции технологий программирования