Использование технологий CUDA для высокопроизводительных вычислений

Автор: Пользователь скрыл имя, 30 Марта 2011 в 23:17, курсовая работа

Краткое описание

Устройства для превращения персональных компьютеров в маленькие суперкомпьютеры известны довольно давно. Ещё в 80-х годах прошлого века на рынке предлагались так называемые транспьютеры, которые вставлялись в распространенные тогда слоты расширения ISA. Первое время их производительность в соответствующих задачах впечатляла, но затем рост быстродействия универсальных процессоров ускорился, они усилили свои позиции в параллельных вычислениях, и смысла в транспьютерах не осталось. Хотя подобные устройства существуют и сейчас — это разнообразные специализированные ускорители.

Оглавление

Введение……………………………………………………………………………………………………3

Глава 1. Теоретическая часть.

История развития CUDO…………………………………………………………………..4
Возможности NVIDIA CUDA………………………………………………………………5
Преимущества и ограничения CUDA……………………………………………….6
Состав NVIDIA CUDA………………………………………………………………………….9
Основы создания программ на CUDA…………………………………………….10
Модель программирования CUDA………………………………………………….13
Среда программирования……………………………………………………………….14
Оптимизация программ на CUDA……………………………………………………15
Решения с поддержкой NVIDIA CUDA……………………………………………..16
Глава 2. Практическая часть.

Реализация …
Вывод…………………………………………………………………………………………………………11

Используемая литература…………………………………………………………………………

Файлы: 1 файл

ВСиИТ курсовая.docx

— 219.16 Кб (Скачать)

Основные  ограничения CUDA:

  • отсутствие поддержки рекурсии для выполняемых функций;
  • минимальная ширина блока в 32 потока;
  • закрытая архитектура CUDA, принадлежащая NVIDIA.

Слабыми местами  программирования при помощи предыдущих методов GPGPU является то, что эти методы не используют блоки исполнения вершинных шейдеров в предыдущих неунифицированных архитектурах, данные хранятся в текстурах, а выводятся во внеэкранный буфер, а многопроходные алгоритмы используют пиксельные шейдерные блоки. В ограничения GPGPU можно включить: недостаточно эффективное использование аппаратных возможностей, ограничения полосой пропускания памяти, отсутствие операции scatter (только gather), обязательное использование графического API.

Основные  преимущества CUDA по сравнению с предыдущими методами GPGPU вытекают из того, что эта архитектура спроектирована для эффективного использования неграфических вычислений на GPU и использует язык программирования C, не требуя переноса алгоритмов в удобный для концепции графического конвейера вид. CUDA предлагает новый путь вычислений на GPU, не использующий графические API, предлагающий произвольный доступ к памяти (scatter или gather). Такая архитектура лишена недостатков GPGPU и использует все исполнительные блоки, а также расширяет возможности за счёт целочисленной математики и операций битового сдвига.

Кроме того, CUDA открывает некоторые аппаратные возможности, недоступные из графических API, такие как разделяемая память. Это память небольшого объёма (16 килобайт на мультипроцессор), к которой имеют доступ блоки потоков. Она позволяет кэшировать наиболее часто используемые данные и может обеспечить более высокую скорость, по сравнению с использованием текстурных выборок для этой задачи. Что, в свою очередь, снижает чувствительность к пропускной способности параллельных алгоритмов во многих приложениях. Например, это полезно для линейной алгебры, быстрого преобразования Фурье и фильтров обработки изображений.

Удобнее в  CUDA и доступ к памяти. Программный код в графических API выводит данные в виде 32-х значений с плавающей точкой одинарной точности (RGBA значения одновременно в восемь render target) в заранее предопределённые области, а CUDA поддерживает scatter запись — неограниченное число записей по любому адресу. Такие преимущества делают возможным выполнение на GPU некоторых алгоритмов, которые невозможно эффективно реализовать при помощи методов GPGPU, основанных на графических API.

Также, графические  API в обязательном порядке хранят данные в текстурах, что требует предварительной упаковки больших массивов в текстуры, что усложняет алгоритм и заставляет использовать специальную адресацию. А CUDA позволяет читать данные по любому адресу. Ещё одним преимуществом CUDA является оптимизированный обмен данными между CPU и GPU. А для разработчиков, желающих получить доступ к низкому уровню (например, при написании другого языка программирования), CUDA предлагает возможность низкоуровневого программирования на ассемблере. 

Состав NVIDIA CUDA

CUDA включает два API: высокого уровня (CUDA Runtime API) и низкого (CUDA Driver API), хотя в одной программе одновременное использование обоих невозможно, нужно использовать или один или другой. Высокоуровневый работает «сверху» низкоуровневого, все вызовы runtime транслируются в простые инструкции, обрабатываемые низкоуровневым Driver API. Но даже «высокоуровневый» API предполагает знания об устройстве и работе видеочипов NVIDIA, слишком высокого уровня абстракции там нет.

Есть и  ещё один уровень, даже более высокий  — две библиотеки:

CUBLAS — CUDA вариант BLAS (Basic Linear Algebra Subprograms), предназначенный для вычислений задач линейной алгебры и использующий прямой доступ к ресурсам GPU;

CUFFT — CUDA вариант библиотеки Fast Fourier Transform для расчёта быстрого преобразования Фурье, широко используемого при обработке сигналов. Поддерживаются следующие типы преобразований: complex-complex (C2C), real-complex (R2C) и complex-real (C2R).

Рассмотрим  эти библиотеки подробнее. CUBLAS — это переведённые на язык CUDA стандартные алгоритмы линейной алгебры, на данный момент поддерживается только определённый набор основных функций CUBLAS. Библиотеку очень легко использовать: нужно создать матрицу и векторные объекты в памяти видеокарты, заполнить их данными, вызвать требуемые функции CUBLAS, и загрузить результаты из видеопамяти обратно в системную. CUBLAS содержит специальные функции для создания и уничтожения объектов в памяти GPU, а также для чтения и записи данных в эту память. Поддерживаемые функции BLAS: уровни 1, 2 и 3 для действительных чисел, уровень 1 CGEMM для комплексных. Уровень 1 — это векторно-векторные операции, уровень 2 — векторно-матричные операции, уровень 3 — матрично-матричные операции.

CUFFT — CUDA вариант функции быстрого преобразования Фурье — широко используемой и очень важной при анализе сигналов, фильтрации и т.п. CUFFT предоставляет простой интерфейс для эффективного вычисления FFT на видеочипах производства NVIDIA без необходимости в разработке собственного варианта FFT для GPU. CUDA вариант FFT поддерживает 1D, 2D, и 3D преобразования комплексных и действительных данных, пакетное исполнение для нескольких 1D трансформаций в параллели, размеры 2D и 3D трансформаций могут быть в пределах [2, 16384], для 1D поддерживается размер до 8 миллионов элементов. 

Основы  создания программ на CUDA

Для понимания  дальнейшего текста следует разбираться  в базовых архитектурных особенностях видеочипов NVIDIA. GPU состоит из нескольких кластеров текстурных блоков (Texture Processing Cluster). Каждый кластер состоит из укрупнённого блока текстурных выборок и двух-трех потоковых мультипроцессоров, каждый из которых состоит из восьми вычислительных устройств и двух суперфункциональных блоков. Все инструкции выполняются по принципу SIMD, когда одна инструкция применяется ко всем потокам в warp (термин из текстильной промышленности, в CUDA это группа из 32 потоков — минимальный объём данных, обрабатываемых мультипроцессорами). Этот способ выполнения назвали SIMT (single instruction multiple threads — одна инструкция и много потоков).

Каждый из мультипроцессоров имеет определённые ресурсы. Так, есть специальная разделяемая  память объемом 16 килобайт на мультипроцессор. Но это не кэш, так как программист  может использовать её для любых  нужд, подобно Local Store в SPU процессоров Cell. Эта разделяемая память позволяет обмениваться информацией между потоками одного блока. Важно, что все потоки одного блока всегда выполняются одним и тем же мультипроцессором. А потоки из разных блоков обмениваться данными не могут, и нужно помнить это ограничение. Разделяемая память часто бывает полезной, кроме тех случаев, когда несколько потоков обращаются к одному банку памяти. Мультипроцессоры могут обращаться и к видеопамяти, но с большими задержками и худшей пропускной способностью. Для ускорения доступа и снижения частоты обращения к видеопамяти, у мультипроцессоров есть по 8 килобайт кэша на константы и текстурные данные.

Мультипроцессор использует 8192-16384 (для G8x/G9x и GT2xx, соответственно) регистра, общие для всех потоков всех блоков, выполняемых на нём. Максимальное число блоков на один мультипроцессор для G8x/G9x равно восьми, а число warp — 24 (768 потоков на один мультипроцессор). Всего топовые видеокарты серий GeForce 8 и 9 могут обрабатывать до 12288 потоков единовременно. GeForce GTX 280 на основе GT200 предлагает до 1024 потоков на мультипроцессор, в нём есть 10 кластеров по три мультипроцессора, обрабатывающих до 30720 потоков. Знание этих ограничений позволяет оптимизировать алгоритмы под доступные ресурсы.

Первым шагом  при переносе существующего приложения на CUDA является его профилирование и определение участков кода, являющихся «бутылочным горлышком», тормозящим работу. Если среди таких участков есть подходящие для быстрого параллельного исполнения, эти функции переносятся на Cи расширения CUDA для выполнения на GPU. Программа компилируется при помощи поставляемого NVIDIA компилятора, который генерирует код и для CPU, и для GPU. При исполнении программы, центральный процессор выполняет свои порции кода, а GPU выполняет CUDA код с наиболее тяжелыми параллельными вычислениями. Эта часть, предназначенная для GPU, называется ядром (kernel). В ядре определяются операции, которые будут исполнены над данными.

Видеочип получает ядро и создает копии для каждого элемента данных. Эти копии называются потоками (thread). Поток содержит счётчик, регистры и состояние. Для больших объёмов данных, таких как обработка изображений, запускаются миллионы потоков. Потоки выполняются группами по 32 штуки, называемыми warp'ы. Warp'ам назначается исполнение на определенных потоковых мультипроцессорах. Каждый мультипроцессор состоит из восьми ядер — потоковых процессоров, которые выполняют одну инструкцию MAD за один такт. Для исполнения одного 32-поточного warp'а требуется четыре такта работы мультипроцессора (речь о частоте shader domain, которая равна 1.5 ГГц и выше).

Мультипроцессор не является традиционным многоядерным процессором, он отлично приспособлен для многопоточности, поддерживая до 32 warp'ов единовременно. Каждый такт аппаратное обеспечение выбирает, какой из warp'ов исполнять, и переключается от одного к другому без потерь в тактах. Если проводить аналогию с центральным процессором, это похоже на одновременное исполнение 32 программ и переключение между ними каждый такт без потерь на переключение контекста. Реально ядра CPU поддерживают единовременное выполнение одной программы и переключаются на другие с задержкой в сотни тактов.

Модель  программирования CUDA

Повторимся, что CUDA использует параллельную модель вычислений, когда каждый из SIMD процессоров  выполняет ту же инструкцию над разными  элементами данных параллельно. GPU является вычислительным устройством, сопроцессором (device) для центрального процессора (host), обладающим собственной памятью и обрабатывающим параллельно большое количество потоков. Ядром (kernel) называется функция для GPU, исполняемая потоками (аналогия из 3D графики — шейдер).

Выше я  говорила, что видеочип отличается от CPU тем, что может обрабатывать одновременно десятки тысяч потоков, что обычно для графики, которая хорошо распараллеливается. Каждый поток скалярен, не требует упаковки данных в 4-компонентные векторы, что удобнее для большинства задач. Количество логических потоков и блоков потоков превосходит количество физических исполнительных устройств, что даёт хорошую масштабируемость для всего модельного ряда решений компании.

Модель программирования в CUDA предполагает группирование потоков. Потоки объединяются в блоки потоков (thread block) — одномерные или двумерные сетки потоков, взаимодействующих между собой при помощи разделяемой памяти и точек синхронизации. Программа (ядро, kernel) исполняется над сеткой (grid) блоков потоков (thread blocks), см. рисунок ниже. Одновременно исполняется одна сетка. Каждый блок может быть одно-, двух- или трехмерным по форме, и может состоять из 512 потоков на текущем аппаратном обеспечении.

Блоки потоков  выполняются в виде небольших  групп, называемых варп (warp), размер которых — 32 потока. Это минимальный объём данных, которые могут обрабатываться в мультипроцессорах. И так как это не всегда удобно, CUDA позволяет работать и с блоками, содержащими от 64 до 512 потоков.

Группировка блоков в сетки позволяет уйти от ограничений и применить ядро к большему числу потоков за один вызов. Это помогает и при масштабировании. Если у GPU недостаточно ресурсов, он будет  выполнять блоки последовательно. В обратном случае, блоки могут  выполняться параллельно, что важно  для оптимального распределения  работы на видеочипах разного уровня, начиная от мобильных и интегрированных.  

Среда программирования

В состав CUDA входят runtime библиотеки:

общая часть, предоставляющая встроенные векторные  типы и подмножества вызовов RTL, поддерживаемые на CPU и GPU;

CPU-компонента, для управления одним или несколькими  GPU;

GPU-компонента, предоставляющая специфические  функции для GPU.

Основной  процесс приложения CUDA работает на универсальном процессоре (host), он запускает несколько копий процессов kernel на видеокарте. Код для CPU делает следующее: инициализирует GPU, распределяет память на видеокарте и системе, копирует константы в память видеокарты, запускает несколько копий процессов kernel на видеокарте, копирует полученный результат из видеопамяти, освобождает память и завершает работу.

В качестве примера для понимания приведем CPU код для сложения векторов, представленный в CUDA:  

Функции, исполняемые  видеочипом, имеют следующие ограничения: отсутствует рекурсия, нет статических переменных внутри функций и переменного числа аргументов. Поддерживается два вида управления памятью: линейная память с доступом по 32-битным указателям, и CUDA-массивы с доступом только через функции текстурной выборки.

Программы на CUDA могут взаимодействовать с  графическими API: для рендеринга данных, сгенерированных в программе, для считывания результатов рендеринга и их обработки средствами CUDA (например, при реализации фильтров постобработки). Для этого ресурсы графических API могут быть отображены (с получением адреса ресурса) в пространство глобальной памяти CUDA. Поддерживаются следующие типы ресурсов графических API: Buffer Objects (PBO / VBO) в OpenGL, вершинные буферы и текстуры (2D, 3D и кубические карты) Direct3D9.

Информация о работе Использование технологий CUDA для высокопроизводительных вычислений